
1

Large-scale Debloating of Binary Shared Libraries

IOANNIS AGADAKOS∗†, SRI International
NICHOLAS DEMARINIS†, DI JIN, and KENT WILLIAMS-KING, Brown University
JEARSON ALFAJARDO and BENJAMIN SHTEINFELD, Brown University
DAVID WILLIAMS-KING, Columbia University
VASILEIOS P. KEMERLIS, Brown University
GEORGIOS PORTOKALIDIS, Stevens Institute of Technology

Developers nowadays have access to an arsenal of toolkits and libraries for rapid application prototyping. However,
when an application loads a library, the entirety of that library’s code is mapped into the process address space,
even if only a single function is actually needed. The unused portion is bloat that can negatively impact software
defenses by unnecessarily inflating their overhead or increasing the attack surface. In this paper, we investigate
whether debloating is possible and practical at the binary level. To this end, we present Nibbler : a system that
identifies and erases unused functions within dynamic shared libraries. Nibbler works in tandem with defenses
like continuous code re-randomization and control-flow integrity, enhancing them without incurring additional
run-time overhead. We developed and tested a prototype of Nibbler on x86-64 Linux; Nibbler reduces the size of
shared libraries and the number of available functions, for real-world binaries and the SPEC CINT2006 suite,
by up to 56% and 82%, respectively. We also demonstrate that Nibbler benefits defenses by showing that: (i) it
improves the deployability of a continuous re-randomization system for binaries, namely Shuffler, by increasing
its efficiency by 20%, and (ii) it improves certain fast, but coarse and context-insensitive control-flow integrity
schemes by reducing the number of gadgets reachable through indirect branch instructions by 75% and 49%, on
average. Lastly, we apply Nibbler on ≈30K C/C++ binaries and ≈5K unique dynamic shared libraries (i.e., almost
the complete set of the Debian sid distribution), as well as on 9 official Docker images (with millions of downloads
in Docker Hub), reporting entrancing findings regarding code bloat at large.

CCS Concepts: • Security and privacy → Systems security; Software and application security; Software
security engineering .

Additional Key Words and Phrases: Code debloating, Static binary analysis, Software security

ACM Reference Format:
Ioannis Agadakos, Nicholas DeMarinis, Di Jin, Kent Williams-King, Jearson Alfajardo, Benjamin Shteinfeld, David
Williams-King, Vasileios P. Kemerlis, and Georgios Portokalidis. 2020. Large-scale Debloating of Binary Shared
Libraries. Digit. Threat. Res. Pract. 1, 1, Article 1 (January 2020), 29 pages. https://doi.org/10.1145/3414997

∗Work done while at Stevens Institute of Technology.
†Joint first authors.

Authors’ addresses: Ioannis Agadakos, ioannis.agadakos@sri.com, SRI International; Nicholas DeMarinis, ndemarin@cs.brown.
edu; Di Jin, di_jin@brown.edu; Kent Williams-King, Brown University; Jearson Alfajardo; Benjamin Shteinfeld, Brown
University; David Williams-King, dwk@cs.columbia.edu, Columbia University; Vasileios P. Kemerlis, vpk@cs.brown.edu,
Brown University; Georgios Portokalidis, gportoka@stevens.edu, Stevens Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2576-5337/2020/1-ART1 $15.00
https://doi.org/10.1145/3414997

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3414997
https://doi.org/10.1145/3414997

1 Introduction
Software developers rely heavily on shared libraries for rapid application prototyping and development.
However, as libraries are utilized by more and more diverse applications, they grow in complexity and
size, accumulating an abundance of new features, while retaining old, potentially unused ones. When an
application loads a dynamic shared library, all of this functionality is included in all of the application’s
processes, even if only a single function is actually used. This bloat of code affects binary programs and
libraries that frequently suffer from critical vulnerabilities [24], which enable attackers to compromise them
despite broadly-deployed defenses, such as data execution prevention (DEP) [7] and address-space layout
randomization (ASLR) [68]. More importantly, code bloat impedes the adoption of novel defenses, like
continuous code re-randomization [11, 20, 97, 101] (e.g., due to increased run-time overhead), while it can
also restrict the effectiveness of others, like control-flow integrity (CFI) [1] (i.e., due to over-permissiveness).

Recent work by Quach et al. [70] proposed an LLVM-based framework that analyzes code at compile
time and embeds function-dependency metadata in the emitted binaries. This information is later used
by a modified loader to debloat libraries, which are dynamically-loaded by the application, by overwriting
unused shared-library code. The results of the aforementioned study confirmed that a large part of library
code is indeed not needed by applications, and, therefore, it is possible to debloat them without restricting
their functionality. The question this paper aims to answer is the following: is it possible to debloat
binary-only software, to what extent, and what are the security benefits? Binary-only, dynamically-linked
or shared libraries can still be found in many settings: commercial software is usually distributed without
source code, and even open-source software may depend on (legacy) binary-only, shared libraries.

To answer this question, we design and implement Nibbler : a system that analyzes binary applications
and the libraries they depend on to identify and erase unused library code. Nibbler generates thin versions
of shared libraries, which can be used instead of the original, bloated ones with any of the analyzed
applications. Nibbler focuses on shared libraries as they have a series of advantages over static libraries in
real-world deployments: (i) application binaries are smaller, (ii) the code of shared libraries is efficiently
shared by applications, so it is not duplicated in physical memory, (iii) shared libraries can be developed in
different programming languages than C/C++ (e.g., in Go) or built using different toolchains (e.g., LLVM
and GCC), (iv) they facilitate maintainability (i.e., updating and patching), (v) their load-time addresses
can be individually randomized by ASLR, and (vi) shared libraries with certain licenses, like (L)GPL,
can be used by applications without distribution complications.

Previous attempts to debloat binaries, e.g., by Mulliner and Neugschwandtner [62], used bounded
address tracking [47] to statically determine the set of used functions, which is prone to errors and
requires the manual whitelisting of certain functions to avoid program crashes. In antithesis, Nibbler
over-approximates the function-call graph (FCG) of applications to conservatively include all code that
could potentially be used (assuming no manual library loading). Hence, even though Nibbler also relies
on static analysis, it does not lead to application crashes nor requires maintaining a whitelist.

As binary analysis is an undecidable problem, in the general case [98], we focus on non-obfuscated,
compiler-generated code, and leverage symbol and relocation information—produced during compilation
and/or linking—to correctly disassemble binaries. We expect that software vendors will be willing to
provide (anonymized) symbols and relocations for their libraries to facilitate debloating and retrofitting
defenses. More importantly, relocation information is already included in many modern libraries to
support ASLR [28, 102], and various operating system vendors offer symbol files [25, 59, 99, 100] for
their most popular libraries. If such information is not available, disassembly may still be possible using
advanced reverse-engineering and binary-analysis tools [41, 64, 82, 92, 95, 96].

With Nibbler, we overcome various challenges pertaining to the FCG reconstruction of binaries. For
example, certain compiler optimizations make transitions between functions implicit. The treatment of
function pointers is another challenge, as failure to detect the usage of one could lead to incorrectly
excluding used code. We propose a novel analysis for detecting address-taken (AT) functions (i.e., functions
that have their address referenced as a constant) [70] that are not unused, and iteratively eliminate them,
while we include all others. Finally, a challenge of more technical nature is to precisely map the policies
applied by the system loader when resolving symbols, which includes things like special symbols resolved
based on the actual configuration of the system (e.g., the CPU model). We found that this intricacy is
not addressed in earlier studies [62, 70].

We developed a prototype of Nibbler for x86-64 Linux and tested it with real-world applications,
including the GNU Coreutils, the Nginx web server, the MySQL database server, and the SPEC CINT2006
benchmark suite. Our evaluation shows that Nibbler reduces library code size and functions in scope,
including the notoriously hard to analyze GNU libc (glibc), by up to 56% and 82%, respectively. While
Nibbler does not focus on applications that manually load libraries with dlopen(), we also developed a
profiling tool for collecting symbols loaded by applications at run time, similarly to training approaches
employed by earlier studies [70]. We evaluate Nibbler with run-time profiling using the Chromium browser,
which extensively loads libraries at run time. On average, we reduce code size and functions in scope
by 25.98% and 34.95%, respectively. In addition, we apply Nibbler on ≈30K C/C++ binaries and ≈5K
unique dynamic shared libraries (i.e., almost the complete set of the Debian sid distribution [86]), as
well as on 9 official Docker images (with millions of downloads in Docker Hub [29]), reporting entrancing
findings regarding code bloat at large.

We evaluate the security benefits of debloated code, by running the Nginx web server with thinned
libraries under Shuffler [101], a continuous re-randomization system for binaries. We observe a throughput
improvement of 20%, which increases the deployability of the defense. We also developed an analysis
framework to determine the effect of debloated code on certain CFI techniques [58, 90, 107, 108], including
real-world CFI solutions, like Microsoft’s Control-Flow Guard [58] and LLVM’s CFI enforcement [90].
For coarse, context-insensitive techniques [107, 108], we found that the number of gadgets that can
be targeted by function returns is reduced by 75% on average. The number that can be targeted by
indirect function calls is reduced by 49% on average, because our analysis detects and removes unused
address-taken functions. While the number of gadgets remaining in the application is still significant, the
analysis performed by Nibbler clearly improves the effectiveness of some CFI defenses. Finally, we look at
whether debloating can reduce attack surface by removing vulnerabilities. Unlike what is suggested by
previous work [70], we argue that this type of debloating cannot reduce attack surface, as, by design, it
only removes code that is never used by applications.

Below, we summarize the contributions of this paper:
• We design and develop a practical system, Nibbler, which removes bloat from binary shared libraries

without requiring source code and recompilation. In addition, we devise a novel method for detecting
unused address-taken functions, which allows Nibbler to eliminate, safely, even more unused code.

• We evaluate the debloating capabilities of Nibbler with real-world binaries and the SPEC CINT2006
suite, and show that it removes 33%–56% of code from libraries, and 59%–82% of the functions in
scope. We also apply Nibbler on ≈30K C/C++ binaries, and ≈5K unique dynamic shared libraries,
as well as on 9 official Docker images, reporting interesting findings.

• We demonstrate the benefits of debloating to security schemes, like continuous code re-randomization,
by integrating Nibbler with an existing system [101], observing a 20% run-time improvement for
Nginx. We also demonstrate the benefits to coarse-grained CFI [58, 107, 108] by analyzing the
evaluated applications and reporting that, on average, Nibbler removes 75% of the available gadgets.

The rest of this paper is organized as follows. Sec. 2 provides background information and motivates
our work by discussing how Nibbler improves existing defenses. We present the design of Nibbler and our
methodology for thinning shared libraries in Sec. 3. In Sec. 4, we briefly discuss how we implemented
Nibbler and challenges we had to overcome. Sec. 5 presents the results from evaluating Nibbler, Sec. 6
discusses limitations of debloating, in general, and Sec. 7 summarizes related work. We conclude in Sec. 8.

2 Background and Motivation

2.1 Software Exploitation Techniques
Attacks against software written in C and C++ are currently employing multiple vulnerabilities to
overcome defenses like ASLR [68] and DEP [7]. They first reveal the layout of the targeted application,
either by exploiting information leakage vulnerabilities [83] or using other guessing techniques [12, 38,
75, 84] to bypass ASLR. Then, they exploit memory-safety bugs to take control of code pointers, hijack
control flow, and, ultimately, perform code-reuse to achieve arbitrary code execution, despite DEP [87].

Such attacks employ techniques like ROP [80] and return-to-libc (ret2libc) [27]. The latter reuses
entire functions, while the former chains arbitrary pieces of code terminating in indirect control-flow
instructions, called gadgets. Other techniques, inspired by the above, include JOP [19], COP [37],
COOP [78], CFB [17], and Control Jujutsu [31]. Code bloat is a boon for attackers, as more code implies
potentially more gadgets to pick from, making the development of payloads easier and faster, thereby
facilitating automation [18].

2.2 Continuous Code Re-Randomization
Continuous code re-randomization techniques [11, 20, 35, 97, 101, 102] mitigate exploits by continuously
moving code at run time with high frequency. This introduces a real-time deadline for attackers, who
only have milliseconds between exposing the layout of the process and mounting a code-reuse attack.
Essentially, they aim to invalidate the leaked information before they can be used by exploits. A high
re-randomization frequency can be pivotal against browser exploits [83] that utilize malicious JavaScript
(JS) to execute the whole locally, using the leaked information almost immediately. Run-time overhead
is also crucial, as lightweight defenses are a lot more likely to be adopted than heavyweight ones. By
removing unneeded code, there is less code that needs to be shuffled at run time, so we can improve
continuous re-randomization solutions both in terms of frequency and overhead.

2.3 Control-Flow Integrity Defenses
CFI is a technique proposed by Abadi et al. [1], which aims to enforce the control flow of the original
program, forbidding arbitrary transitions. It aims to prevent the control-flow hijacking part of attacks,
after code pointers are taken over. There have been multiple instantiations of CFI [66, 67, 93, 107, 108]
with different granularity, overhead, and requirements, but applying CFI on binaries, and achieving low
overhead, has been particularly problematic. The most deployable solutions enforce a coarse version of
CFI [66, 107, 108], without employing context in their enforcement of the control-flow graph (CFG). These
defenses only allow functions to return to code segments that follow a function invocation (i.e., CALL-
preceded gadgets) and indirect function calls to address-taken and library-exported functions (which can
be called through a pointer). Nibbler enhances such CFI techniques in two ways by removing unnecessary
code: (i) there are less CALL-preceded gadgets for returns to target, and (ii) there are less AT functions
that can be targeted by indirect calls.

Libraries

Application(s)

Thinned Libraries

Nibbler

Symbols

Relocations

Erased code

AT Function

Prunning

Function

Erasure

FCG

Reconstruction

Disassembly

FCGs

Composition

Unreachable

Code

Detection

Fig. 1. Overview of Nibbler.

Relocation section '.rela.plt'

 Offset Info Type Sym. Value Sym.Name+Addend

000000208018 000200000007 R_X86_64_JUMP_SLO 0000000000000000 __open + 0

000000208020 000300000007 R_X86_64_JUMP_SLO 0000000000000000 free + 0

000000208028 000400000007 R_X86_64_JUMP_SLO 0000000000000000 strncpy + 0

<strncpy@plt>:

ba0: ff 25 82 74 20 00 jmpq *0x207482(%rip) # strncpy@GOT

ba6: 68 02 00 00 00 pushq $0x2

bab: e9 c0 ff ff ff jmpq b70 # PLT0

<crypt_r>:

ea0: 41 55 push %r13

...

f35: e8 66 fc ff ff callq ba0 <strncpy@plt>

Fig. 2. Example of a call to function in a shared library
(glibc) in crypt_r(), libcrypt-2.19.so.

3 Design
Nibbler is designed to primarily work with Linux ELF files [91]. We believe our techniques are applicable
to other settings, such as Microsoft Windows and the PE file format [103], but leave this for future work.
We focus on the x86-64 architecture, but Nibbler’s requirements (disassembly, library symbols, etc.) are
also available on other contemporary architectures, such as x86, ARM, and RISC-V [102].

3.1 Overview
Figure 1 depicts a high-level overview of Nibbler. Given a set of binary applications, Nibbler processes
the shared libraries they use, disassembles them, and statically analyzes them to reconstruct the FCG of
each library. Then, the functions required by applications and the already-extracted library FCGs are
composed to determine functions that are never called (i.e., unreachable code), by any of the applications
of the set. At this point, Nibbler considers all functions that may be called indirectly (i.e., through a
function pointer) as used. The analysis over-approximates the set of functions that could (potentially) be
used to eliminate the possibility of error, assuming no manually-loaded libraries (e.g., via dlopen() or
dlsym()). We then perform an iterative analysis that detects AT functions that can never be used and
also remove them. Finally, Nibbler produces a set of new (thinned) libraries that can be used with the
input binaries, where the extra code has been erased by overwriting it with a trapping instruction [23].

3.2 Disassembly
Obtaining the complete disassembly of an arbitrary binary program is an undecidable problem [98].
However, modern compiler-generated binaries can be linearly disassembled (verified on GCC and LLVM [5,
8]), especially since we use symbol information to accurately identify function boundaries. Note, though,
that in modern settings we can precisely obtain the boundaries of all functions in executable ELF sections
(e.g., .text, .plt), using stack unwinding information. Stack unwinding metadata are mandated by C++
code for exception handling [55], while both GCC and LLVM emit .eh_frame sections even for C code to
support interoperability with C++ [102]. Specifically, the .eh_frame section contains a Frame Description
Entry (FDE) record for every function in the respective ELF [55]; the PC Begin and PC Range fields (of
each FDE) provide the boundaries in question. For exported library functions, we also record the following
metadata: (i) the type of the function symbol (FUNC or IFUNC), (ii) its binding, which dictates its scope
(GLOBAL or WEAK, for externally-visible symbols), and (iii) its version (e.g., memcpy@@GLIBC_2.14). Note
that this information is always available, in shared libraries, for exported symbols.

GNU IFUNC-type symbols. These allow for the run-time selection of a target function, decided by a
gateway function commonly referred to as a resolver function. Typically, this mechanism is used to select
between different function implementations that use processor-specific features, such as SSE, AVX, etc.,
which are more efficient but not always available. IFUNC symbols point to resolver functions, which, in
turn, contain references to multiple targets. To avoid specializing an application to a specific environment,
Nibbler preserves all possible IFUNC targets if the IFUNC symbol is called.

3.3 Library FCG Reconstruction
We use the disassembly and symbol information to statically reconstruct the FCG of each library. The goal
is to resolve the targets of function calls. On x86, compilers use two classes of instructions to perform this
task, specifically CALL and JMP instructions; we handle both in the same way. Function calls are further
classified into three categories: (i) calls targeting library-local functions, (ii) calls targeting functions in
other shared libraries, and (iii) indirect calls that use pointers. We ignore cases where the callee is the
same with the caller (recursion). Also, multiple edges between functions are collapsed to a single one.

3.3.1 Calls to Local Functions. To resolve these calls, we go over the disassembled code and search
for CALL and JMP instructions with an immediate value (i.e., a constant) as operand/argument. During
execution, the CPU adds the value of the immediate to the address of the next instruction to calculate
the address to transfer control to (PC-relative addressing). When the target address matches the starting
address of a function, we add an edge between these two functions (caller-callee) in the FCG.

3.3.2 Calls to Functions in Shared Libraries. These calls are (usually) resolved lazily at run time, when
a function is first invoked. The mechanism employed on Linux, and other Unix-like systems, uses
two specially crafted sections called the Procedure Linkage Table (PLT) and the Global Offset Table
(GOT) [51]. Calls to external functions are performed through the PLT. For example, in Figure 2, the call
at address 0x0f35 targets an entry in the PLT that corresponds to the strnpy() function. PLT entries
are also code, which on the first invocation call the dynamic linker/loader to resolve the desired symbol.
Subsequent calls direct control into the resolved function. The dynamic linker/loader (ld.so(8)) resolves
external functions by name (e.g., strnpy in the example above). The name of the targeted function is
indicated by the second instruction of a PLT entry, the one at address 0x0ba6 in Figure 2. This instruction
pushes an offset in another table onto the stack, 0x2 in our example. That table essentially contains a list
of references to symbol names (i.e., the string “strncpy” in our example). We have analyzed the steps
taken by the loader and mirrored the steps in Nibbler to link such functions calls with symbol names.
Resolution of these symbols occurs during the FCG composition step.

3.3.3 Calls using Pointers. These function invocations are performed using a pointer, which can be
dynamically computed at run time. In binary form, they correspond to CALL or JMP instructions (with
register or memory as an operand). Unfortunately, statically resolving the set of potential targets of
such calls is a hard problem [52, 72]. Instead of attempting to do so and risk introducing errors, like
CodeFreeze [62], Nibbler is designed to identify all the functions that could be potentially called through
a pointer, and assumes that any of them may indeed be invoked. We compute the set of indirectly-invoked
functions by analyzing the disassembly and relocation information to identify where the address of a
function is taken, and a pointer is generated. A function used as a callback, for example, will have
its address taken at least once which will add the function to the list of (all) indirect targets. This
over-approximation circumvents the limitations of static analysis to accurately track pointers in memory.

In Sec. 3.5 we present a method for further trimming the set of indirectly-invoked functions, thereby
producing more tight FCGs. We employ two strategies to detect AT functions:

1) Function pointers in disassembled code. When a program assigns a function address to a variable,
instructions are generated to obtain its address and store it in memory or a register. The address of
the function is either directly used as an immediate (mostly on 32-bit systems) or expressed using
PC-relative addressing (x86-64). Nibbler scans the disassembled code for move (MOV) and load-effective
address (LEA) instructions, looking for operands that match function addresses. Since the set of function
addresses is known, this heuristic works very well, especially on x86-64 where PC-relative addressing is
used extensively. However, an optimizing compiler could perform arithmetic to compute target addresses,
and detecting such cases would require data-flow (e.g., value set) analysis. We do look at operands for
ADD/SUB arithmetic instructions, because they may occasionally contain function references. But in our
experiments we never saw an address computation split between multiple instructions [102] (and hence
data-flow analysis was not required).

2) Function pointers via relocation information. Relocations are usually created to facilitate
relocating code and data at load-time (e.g., for enabling ASLR) [28, 102]. Each entry corresponds to a
particular offset in the binary, typically a pointer to a function or global data object. Relocation entries
describe how that address should be adjusted when the target entity is relocated. Modern systems support
multiple relocation types [43, Chapter 4.4], which define different ways of calculating the “fix” to the
targeted offset. Nibbler parses them to identify any AT functions that were not discovered in the previous
step, mainly, in data sections. Relocations of type R_X86_64_IRELATIVE require more complex handling,
as they specify that the targeted address should be patched based on the return value of a resolver
function. Nibbler handles them by scanning the body of resolver functions, adding any code pointers
identified there in the list of targets that could be potentially invoked at run time.

3.4 Unreachable Code Detection
We analyze the application binaries and compose the FCGs of used libraries to conservatively estimate
the library functions that are needed by the applications. Assuming the set of used libraries is known,
our algorithm ensures that unused functions can be safely removed. Applications that manually load
additional libraries at runtime are discussed in Sec. 3.7.

3.4.1 Identification of Required Symbols. At this stage, Nibbler calculates which library symbols are
required by the input applications. It does so by processing them to determine the library symbols they
refer to. These are obtained by scanning the PLT sections of the binaries to obtain the required symbol
names, similarly to the process described in Sec. 3.3.2. Initialization and cleanup routines defined in
libraries are also added in the set of required symbols, since they are called by the dynamic linker/loader
during library loading or unloading. Such functions are defined (as arrays of function pointers) in special
sections in binaries. Some of these are: .preinit_array, .init, .init_array, .fini, and .fini_-
array. Nibbler essentially manages to capture the non-trivial startup procedure of x86 ELF-compliant
systems [42]. At this stage, we still consider that all AT functions are required.

3.4.2 Composition of Function-Call Graphs. We compose the FCGs of libraries, adding edges between
callers and callees, the same way the dynamic linker/loader does when a program executes. To connect
the various graphs, we start by resolving each graph’s calls to external functions. In the simplest case,
this requires looking for a function symbol with the same name as the one referenced by a call site.

int BN_mod_exp_mont_consttime(...)
{

...
static const bn_mul_mont_f mul_funcs[4] = {

bn_mul_mont_t4_8, bn_mul_mont_t4_16,
bn_mul_mont_t4_24, bn_mul_mont_t4_32

};
...

}

Listing 1. Example of AT functions within a function
defined in crypto/bn/bn_exp.c, openssl-1.1.0j.

<__write>:

dbbf0: 83 3d dd eb 2c 00 00 cmpl $0x0,0x2cebdd(%rip)

dbbf7: 75 10 jne dbc09 <__write+0x19>

Fig. 3. Example of a fall-through function (__write)
that (re)uses the code of another function (__write_-
nocancel).

At load-time this process is performed by ld.so, which enforces various rules that Nibbler replicates
faithfully. In particular, we enforce the following: (a) LOCAL symbols are ignored; (b) GLOBAL symbols
have precedence over WEAK ones; and (c) when the particular version of a symbol requested is not
found, we use the one defined as default. Default symbols are denoted by the two ’@@’ characters
(e.g., putwchar@@GLIBC_2.2.5). (Note that there can only be one default version [30].)

When resolving symbols, it is possible that multiple symbols with the same name exist: e.g., there may
be multiple local symbols with the same name, or a local symbol with the same name as a global one.
For inter-library symbol resolution, all symbols except weak or global ones are ignored. The dynamic
linker/loader resolves WEAK and GLOBAL symbol references according to library load order. We did not
implement all intricacies of library loading—a complex process; e.g., dependencies can be recursive—but
rather create links to all weak/global functions of the same name in our graph. This approach produces a
super-graph that may include more code than necessary, but is guaranteed to include all functions that
could be possibly used.

3.4.3 Collection of Unused Functions. At this point, we can use the composed FCG and the required
symbols extracted in the previous steps to create an over-approximated set of used functions. The graph
actually consists of multiple, potentially disconnected, sub-graphs; we focus on the ones that include
required symbols, such as library functions invoked by one of the applications or AT functions. These
nodes act as starting points that allow us to designate their whole sub-graph as used. All other functions
are unreachable code that we can remove from libraries.

3.5 AT Function Pruning
To reduce the number of AT functions included in the FCG, we introduce an analysis that takes into
account the location a code pointer was found. Initially, we separate pointers found in data (e.g., .rodata,
.data) and code (i.e., .text) segments. For the latter, we iterate every function that has been classified
as unused by our algorithm, and check if an AT function’s address is only taken within unused functions.
If this condition is true, we mark the respective AT function as unused. Note that this may result in
additional (function) sub-graphs to be deemed unused, and so we iteratively perform this process until
no additional functions can be classified as unused.

To eliminate AT functions in data segments (e.g., in .(ro)data), we proceed as follows. First, we
leverage symbol information to identify the bounds ([OBJ_BEGIN – OBJ_END]) of global data objects
(i.e., symbols of type OBJECT/GLOBAL). Next, we check for relocation entries that: (a) correspond to
AT functions; and (b) fall within the bounds of any global object. Our approach basically identifies
statically-initialized arrays of function pointers or data structures that contain function pointers. Lastly,
we iterate every function that has been classified as unused by our algorithm, and check if OBJ_BEGIN

is taken only within unused functions. Again, if this condition is true, we mark the AT functions that
correspond to the object beginning at OBJ_BEGIN as unused, and we iteratively perform this process
until no additional function sub-graphs can be classified as unused. Note that the above process is safe;
it only excludes AT functions that are used by unreachable code. For example, consider the function
shown in Listing 1, which defines and uses the static array of function pointers bn_mul_mont_f[]. If
Nibbler detects that the function is unused, the AT functions contained in the array can also be ignored.
(Assuming they are not directly-invoked, nor their address is taken, by reachable code.)

3.6 Function Erasure
Nibbler erases functions that are not part of the application FCG by overwriting them with a single byte
instruction, namely INT3, which causes a trap and interrupts execution [23]. Both INT3 and HLT [101]
are used in related work for “erasing” code; we chose INT3 as it raises a SIGTRAP, rather than a SIGSEGV,
signal—SIGSEGV has many potential causes.

3.7 Application-Loaded Libraries
Application-loaded libraries are libraries which are loaded manually through calls to dlopen(). Pointers
to functions in such libraries can be dynamically retrieved using dlsym(). Although it is hard, in the
general case, to statically-resolve function arguments that are of pointer type [72] (mostly due to the
imprecision of points-to analysis [72]), Nibbler can ≈89%/≈37% of all dlsym/dlopen arguments, across
≈30K C/C++ binaries and ≈5K unique dynamic shared libraries from the Debian sid distribution [86],
using standard, intra-procedural, value-tracking analysis [3, § 9.2.5] (see Sec. 5.4).

Nevertheless, Nibbler cannot always safety debloat an application which calls dlsym/dlopen. In
our experience, however, profiling such an application with common workloads reveals the additional
dependencies, while previous studies concur with this assessment [70]. Alternatively, we can be conservative
and avoid debloating applications that manually load libraries, or leverage packaging semantics to include
additional code in scope (e.g., all the .so files included in a particular package).

3.8 Challenges
Function aliases. Functions may be encompassed by multiple symbols of the same size (but often
different type or scope), in effect creating aliases for the same code. We treat all aliases as a single entity
and a reference to any name is sufficient to prevent the function from being removed.

Fall-through functions. Some symbols share code (or overlap) with other symbols. This requires that
we employ caution when erasing an unused function, as its bytes may be shared by another symbol. A
frequent case in GNU libc is fall-through functions, shown in Figure 3, where one function performs a
few checks and then drops into the beginning of another function. We carefully identify each function
which does not terminate in a control-flow transfer, forming a reference to the following function and
preventing its removal if the previous function is used.

No-return functions. Functions that the compiler knows will terminate can be marked with the
__noreturn__ GCC attribute, which will be recursively propagated if possible. When generating a call to
such a function, like __fortify_fail, the compiler may simply stop generating code afterwards (which
would be unreachable). Luckily, we always observed the compiler generating a NOP following the CALL in
this case, which allows us to avoid (incorrectly) classifying this case as a fall-through function.

GNU libc sub-libraries. While we view libc as a single library that is used by C/C++ programs,
its most popular version, GNU libc (glibc), actually consists of sub-libraries that implement back-
ends to common interfaces. The Name Service Switch (NSS) [53] is used by glibc to select among
different name resolution mechanisms (e.g., flat-file databases, DNS, LDAP). In particular, glibc consults
nsswitch.conf to determine the mapping between various databases (passwd, shadow, group, hosts,
etc.) and resolution mechanisms (e.g., files, dns, ldap).

Each such mechanism corresponds to a different dynamic shared library (e.g., libnss_files.so,
libnss_dns.so, libnss_ldap.so), which, in turn, provides a specific implementation of the NSS API.
Depending on the contents of nsswitch.conf, glibc loads the respective .so ELF file, using dlopen,
and invokes the relevant (NSS) functions indirectly, after obtaining their addresses via dlsym. Nibbler
parses nsswitch.conf, and adds the matching ELF object(s) and function(s) in the analysis scope. Note
that we also support including all sub-library symbols into Nibbler’s analysis scope.

Zero-sized symbols. Certain internal functions, like _start (GCC-inserted), have a symbol of size zero.
These functions have known semantics (e.g., _start calls __libc_start_main), and so we add them to
the FCG for completeness, marking them as non-removable.

4 Nibbler Implementation
We developed two separate, functionally-equivalent prototypes of Nibbler on Linux. The first/older
one [2] is written in Python; specifically, the disassembly and static analysis components consist of
≈7 KLOC. In addition, this prototype leverages the objdump [36] Linux utility for linear disassembly and
symbol information, and the pyelftools [10] Python package to access ELF files. Our second/newer
implementation consists of ≈2.5 KLOC of C/C++, and is built atop the Egalito framework [102].

Egalito is a binary recompiler ; it allows rewriting binaries in-place, and it does so by first lifting binary
code into a layout-agnostic, but machine-specific, intermediate representation (IR), called EIR, and then
allowing “tools” to inspect or alter it, accordingly. We implemented the algorithms described in Sec. 3,
regarding FCG reconstruction and AT function elimination, as an Egalito “pass” in the case of the newer
prototype, and from scratch in the case of the older one. (This is why the Python implementation is
considerably larger, in terms of LOC, from the C/C++ one.) Note that we do not utilize the binary
rewriting features of Egalito; we merely leverage the framework’s API to precisely disassemble the
corresponding binaries and lift their code in EIR form, which, in turn, we use for implementing the
analyses required for constructing the FCG, identifying all AT functions, pruning unreachable parts of
the call graph, etc. We chose Egalito over similar frameworks as it employs the best jump table analysis
to date. Since by default all binaries installed on Linux are stripped of symbols, we developed a tool for
fetching the debug packages of the binaries and libraries we want to process. It uses the build-id of an
installed library to find a corresponding match in the debug repositories, and automatically download it
using the respective package management tools (i.e., apt(8)).

Application-loaded libraries. We implemented a tool to collect the libraries and symbols which are
manually loaded by programs with dlopen(). We exploited the linker’s auditing interface in Linux [54]
to introduce “hooks” that are called before any operation is performed, such as searching and opening a
library, resolving a symbol, etc. Specifically, we developed a shared library that sets up hooks to receive all
pertinent information from the loader, filters events unrelated to dynamic loading, and logs the rest. The
tool can be easily activated by setting the LD_AUDIT environment variable before running an application.

Table 1. The effect of Nibbler on application sets. The table summarizes library-code reduction in terms of code bytes
and functions removed. “⃝” corresponds to original libraries, “�” to removed code, and “%” to reduction percentage.

Application Set Code Reduction (Lib. Set)

App(s) Set Size Functions Code (KB)

of Bin. # of Lib. ⃝ � % ⃝ � %

a) Coreutils 104 11 4754 2796 58.81% 2164.61 711.01 32.85%
b) SPEC 11 5 7808 5729 73.37% 2431.15 1104.93 45.44%
c) Nginx 1 7 8599 7015 81.57% 2917.77 1632.71 55.95%
d) MySQL 1 8 7979 5524 69.23% 2522.66 1010.17 40.04%

a) + b) + c) + d) 117 16 14438 10622 73.57% 4621.53 2208.93 47.80%

5 Evaluation
To evaluate Nibbler, we used the following sets of applications:

(1) 117 unique binaries and 16 unique shared libraries, which correspond to Coreutils, Nginx, MySQL,
and SPEC CINT2006, for assessing the benefits of Nibbler in terms of code reduction and security,
and also compare and contrast with related studies (Sec. 5.1).

(2) ≈30K C/C++ binaries and ≈5K unique shared libraries (i.e., almost the complete set of the Debian
sid distribution [86]), which we analyze, using Nibbler, to better understand code bloat at large,
reporting interesting findings pertaining to whole Linux distributions (Sec. 5.2).

(3) 9 official Docker images (with millions of downloads in Docker Hub), which we debloat, using Nibbler,
to demonstrate the opportunities for trimming code across whole container images (Sec. 5.3).

Lastly, we discuss the performance of Nibbler, as well as its behavior with application-loaded libraries.

5.1 Debloating Application Sets
For an in-depth analysis of Nibbler, we use the following application suites on Debian GNU/Linux
x86-64 (v9): Coreutils (v8.26), Nginx (v1.10.3), MySQL (v5.5.8), and SPEC CINT2006; we also used
the stock GNU libc (v2.24). We applied Nibbler on Nginx and MySQL individually, as well as on all
the binaries in Coreutils and SPEC CINT20061, treating them as sets of applications. In addition, we
applied Nibbler on all the above applications, considering them as a single set totaling 117 binaries. The
end result is five sets of thinned libraries. Note that for every application set, we generate one set of
libraries to satisfy the requirements of all the included binaries.

We verified that Nibbler removes only unused code with the following tests (all completed successfully):
• Coreutils: We run the built-in high-coverage test suite, invoked through ‘make check’.
• Nginx: We used Siege [46] to perform requests on a running server, and Nginx’s official test suite.
• MySQL: We used the officially-provided test suite, invoked through ‘mysql-test-run.pl’.
• SPEC: We used the ‘ref’ workload.

5.1.1 Code Reduction. Table 1 summarizes the code reduction achieved by Nibbler on the application
sets that do not manually load libraries. It performs the best with Nginx, where 55.95% of library code,
in terms of bytes, is removed. On the other hand, for Coreutils, which include a large number of diverse
utilities, we are able to eliminate 32.85% of library code. If we combine all 117 applications (last row), we
achieve a reduction of 47.80%. If we instead focus on removed functions, reduction is between 58.81% –
81.57%, as many smaller functions are removed.
1Excluding perlbench that did not compile successfully.

Bloat is not equally distributed in libraries. In the worst case (libcrypto), we found that 93.82% of
its functions are not used by any of the four application sets. In the best case (libpcre), we removed
13.29% of its functions, however, this was also one of the smallest libraries in our set. Table 2 highlights
the per-library code reduction achieved by Nibbler in libraries used by all four application sets. We think
that these results demonstrate the heavy bloat in certain libraries, making their thinned versions great
candidates even for system-wide replacement.

5.1.2 Comparison with Piece-wise.

Debloating. While direct comparison with Piece-wise is not possible, because Quach et al. focus on
debloating individual programs, we highlight our differences using Coreutils and SPEC to provide some
perspective to the reader. The mean reduction, in the number of functions, that Piece-wise achieves, with
respect to these two program sets, is 79% and 85%, respectively; Nibbler achieves 58.81% and 73.37%.
This difference is primarily due to the fact that we debloat libraries for sets of applications, instead of
individual binaries. In addition, the lack of semantics in binary code prevents us from effectively using
analyses to eliminate more AT functions, while we preserve multiple versions of a used symbol in thinned
libraries (Piece-wise keeps only one); in Sec. 5.2 we revisit this issue.

Memory overhead. Nibbler can be applied on an entire system or on smaller sets of applications. In
the latter case, if the original version of a library is also in use, then two versions of the same library will
be present in memory (i.e., vanilla and thinned library). Calculating exactly how much memory overhead
the thinned library will impose is not straightforward, as the OS dynamically pages-in code pages used
by applications. We can calculate, however, the additional memory required when all library code is used
(worst case analysis). This corresponds to all code pages (of the thinned library) that have at least one
byte of code that was not erased.

On the other hand, Piece-wise keeps a single version of each library on disk, and removes code at
load time. As a result, each memory page that has code erased—but not removed entirely—is no longer
shared with any other executing application that uses the same library, due to copy-on-write (COW).
Consequently, the overhead increases as more applications execute concurrently. This includes multiple
invocations of the same application, but not multiple processes resulting from a fork() system call. As a
reference, there are approximately 39 distinct applications running in a fresh installation of Debian v9.
Comparison of memory overheads are shown in Table 3. We estimate the per-invocation overhead of
Piece-wise using the code-reduction numbers of Nibbler (more code removed likely means higher overhead
for Piece-wise). Our approach incurs lower and more predictable memory overhead.

Load time. Nibbler does not incur any load-time overhead. In contrast, Piece-wise, which only removes
code at load time, reports a 20x slowdown on average with the small programs in Coreutils (20ms on
average, for a process usually requiring less than 2ms).

5.1.3 Security Analysis.

Impact on continuous code re-randomization. By identifying and removing unused code, Nibbler
can reduce the overhead of certain security techniques, thereby easing their adoption and improving
software security. Shuffler [101] is a system realizing such a technique: continuous re-randomization
of a target program and all its libraries, including its own code. It does so asynchronously, from a
background thread, preparing a new copy of the code every 20 ms (in case of Nginx), and then signaling
all other threads to migrate to this new copy. Because of this asynchronous design, all functions must
be re-randomized, during each shuffle period, as the system cannot determine in advance what will be
required. Nibbler’s library thinning can combine excellently with Shuffler’s defense.

Table 2. Code removed from common libraries in our application set (Coreutils, Nginx, MySQL, and SPEC CINT2006).

Library Unused Code

Functions Bytes

librt 52 (72.22%) 8.88 KB (71.64%)
libattr 17 (53.12%) 3.35 KB (38.17%)
libgcc 113 (66.86%) 36.0 KB (56.10%)
libdl 8 (33.33%) 0.55 KB (26.70%)
libcrypto 4770 (93.82%) 1043.96 KB (83.57%)
libz 83 (40.84%) 40.84 KB (60.91%)
libpthread 139 (46.80%) 19.42 KB (36.89%)
libpcre 21 (13.29%) 33.26 KB (10.09%)
libc 1539 (53.27%) 297.90 KB (24.93%)
libm 426 (66.56%) 172.16 KB (39.76%)
libstdc++ 2719 (71.31%) 309.14 KB (45.04%)
libgmp 438 (66.46%) 176.60 KB (46.43%)
libselinux 225 (63.20%) 50.51 KB (53.13%)
libacl 42 (60.00%) 11.75 KB (69.99%)
libcap 21 (75.00%) 3.38 KB (49.97%)
libcrypt 9 (23.08%) 0.91 KB (4.29%)

Table 3. Memory overhead (KB) comparison.

Application Set Nibbler Piece-wise [70]
Max. Total Estimate

per execution

a) Coreutils 1900 KB 1024 KB
b) SPEC 1148 KB 580 KB
c) Nginx 1668 KB 1292 KB
d) MySQL 2108 KB 1248 KB
a) + b) + c) + d) 3256 KB 1816 KB

 0

 20

 40

 60

 80

 100

1 core, 1 w
orker

1 core, 2 w
orkers

2 cores, 1 w
orker

2 cores, 2 w
orkers

2 cores, 4 w
orkers

geom
etric m

ean

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t
(%

)

Shuffler Nibbler+Shuffler

Fig. 4. Nginx throughput for vanilla Shuffler, and Nibbler+Shuffler,
over an undefended baseline.

We fused Nibbler with Shuffler, on Nginx v1.4.6, trimming functions that would never be used during
execution, reducing the amount of work that Shuffler must perform. Overall, we nibbled ≈1.6K functions
(out of ≈6.2K) or 26%. In our experiment, we used 4 Nginx worker processes, pinned to 2 CPU cores;
Shuffler threads (one per worker) were also pinned to the same cores. Shuffler’s asynchronous overhead
will take CPU time away from the target program, reflecting in a throughput drop. We ran 32 client
threads (using the benchmark tool Siege [46]) pinned to 4 other cores on the same system, which was
sufficient to saturate the server. This experiment is a smaller scale version of the Nginx experiment
included in the original paper [101]. Results are shown in Figure 4.

Nibbler+Shuffler performance improves when there are more Shuffler workers, and hence more CPU
time is being spent on asynchronously copying code. In the 2-cores, 1-worker case, one core runs the
Nginx worker and one executes the Shuffler thread, so Nibbler has little impact. However, in a carefully-
provisioned system, with few spare resources, Nibbler improves Shuffler’s performance significantly.

Specifically, the geometric mean of throughput improved from 50.51% (Shuffler) to 60.54%, a relative
increase of 19.87%. This makes sense since we trimmed 26% of the code; due to Shuffler’s design, we
expect a linear increase in performance as the amount of code decreases. Additionally, we expect these
results to scale to larger experiments, since Shuffler spends very little time on coordination (0.3% of
overall runtime [101]). If the server is multiprocess, every process gets its own independent Shuffler thread,
and Nibbler still reduces the overhead linearly. If the server is multithreaded, Shuffler’s overhead decreases
as more cores become available, and Nibbler still reduces the overhead proportionally.

Impact on control-flow integrity. Nibbler improves low-overhead, coarse CFI schemes in two ways.
First, it reduces the number of (CALL-preceded) ROP gadgets that are accessible to attackers. Second, it
reduces the number of functions that can be targeted by indirect functions calls, by eliminating function
pointers that are never used in applications (Sec. 3.5). To quantify this gain, we built a gadget analysis
framework, atop the Capstone disassembler [71] to calculate the reduction of CFI-resistant [104] gadgets
in thinned libraries. Given an x86-64 ELF binary as input, our tool identifies its executable sections, by
parsing the respective ELF header(s), and proceeds as follows.

First, it pinpoints all the byte sequences (in the previously-identified executable sections) that correspond
to RET, indirect JMP and CALL instructions; the location of every such instruction is marked, as GAD_END,
because it indicates the end of a gadget, while the instruction opcode (RET, JMP, CALL) specifies the type
of the gadget (i.e., ROP, JOP, or COP). Second, GAD_BEGIN is set to GAD_END - 1, and Capstone is used
to linearly disassemble the region [GAD_BEGIN, GAD_END]; every resulting code snippet is by definition a
gadget (as it ends with an indirect branch instruction), and the type of the instruction that starts at
GAD_BEGIN is used to further classify the whole gadget (more about this below). Next, GAD_BEGIN is set to
GAD_END - 2, and step 2 is repeated; the process is executed recursively for GAD_BEGIN = GAD_END - 3,
. . . , GAD_BEGIN = GAD_END - k, where k (bytes) is an input parameter, typically set to 10, in accordance
to modern automated gadget finding tools, like ROPgadget [76], Ropper [77], xrop [16], and rop-tool [88].
(We had to develop our own analysis framework, as none of the aforementioned gadget finding tools is
intended for quantitative analyses [104].)

The above procedure discovers instruction (sub)sequences, of size 1, 2, . . . , k bytes, which are prefixes of
an indirect branch, thereby constituting gadgets. For example, |mov (%rdi), %rax; pop r14; pop r15;
pop rbp; ret| will be accounted as 4 separate ROP gadgets: (a) |pop rbp; ret|, (b) |pop r15; pop
rbp; ret|, (c) |pop r14; pop r15; pop rbp; ret|, and (d) |mov (%rdi), %rax ... ret|. Also,
gadgets (a) – (c) will be classified as loading a register with a value from the stack, whereas (d) will be
classified as a memory load. Lastly, gadgets that include invalid instructions sequences, like privileged
instructions (hlt, in/out, rdmsr/wrmsr, etc.), instructions that access non-general-purpose, registers
(dr#, cr#), and vendor-specific ISA extensions (MMX, SSE, AVX, TSX), are all filtered out.

Table 4 reports the results of our analysis. Suite corresponds to the different applications used, along
with their thinned libraries; the numbers in parentheses indicate code reduction. Total reports the overall
reduction of the gadgets (thinned vs. vanilla) in each library, whereas the rest of the columns (Stack –
NOP) present the reduction of certain gadget classes. For the different gadget types, we used the semantic
definitions of Snow et al. [83], with additional (sub)categories for precision. Notably, and regarding AT
functions, our analysis eliminates 45.19%, 57.86%, 57.75%, and 36.60% of AT functions in the four tested
applications suites (i.e., Coreutils, SPEC, Nginx, and MySQL); 49.08% when we combine all of them.

All in all, the reduction of the CFI-resistant gadgets is analogous to the achieved code reduction, but,
on average, the gadget reduction rate(s) are higher, suggesting that Nibbler can increase considerably
the precision of backward-edge CFI schemes [107, 108]. More importantly, Nibbler can eliminate certain
gadget classes in various libraries (100% reduction), like Load Reg. (load a register from another register

Table 4. CFI-resistant gadget reduction results. The percentages correspond to removed gadgets (thinned vs. vanilla).
Entries marked with ‘N/A’ indicate absence of certain gadget classes in vanilla.

Suite Total
Gadget Type

Stack Load Reg. Memory Arithmetic Logic Branch Syscall NOP
Pivot Lift Reg. Stack Load Store Reg. Mem. Reg. Mem. jmp call

SPEC
libpthread (92.79%) 97.0% N/A N/A 95.7% 100.0% 100.0% 86.5% 97.5% 100.0% 100.0% 100.0% N/A N/A 88.4% 97.5%
libm (39.76%) 52.3% N/A N/A N/A 18.5% 0.0% 0.0% 50.7% 0.0% 100.0% N/A N/A N/A N/A 57.7%
libc (42.01%) 75.8% 91.7% 0.0% 75.6% 78.0% 72.6% 66.2% 75.9% 74.7% 62.6% 76.9% 25.0% 62.1% 73.3% 79.7%
libgcc (72.35%) 45.7% 0.0% N/A 39.8% 60.3% 21.1% 11.1% 69.8% N/A 40.0% N/A N/A N/A N/A 59.4%
libstdc++ (48.88%) 80.1% 0.0% 50.0% 48.3% 79.5% 76.4% 69.7% 72.1% 77.8% 44.8% 100.0% 100.0% 35.7% N/A 78.6%

Coreutils
libpthread (39.94%) 56.8% N/A N/A 61.1% 57.7% 62.5% 56.8% 42.5% 100.0% 55.8% 0.0% N/A N/A 55.8% 56.2%
libdl (75.41%) 97.8% N/A N/A 100.0% 100.0% 100.0% 100.0% 93.8% N/A 100.0% N/A N/A 100.0% N/A 96.8%
libselinux (53.13%) 70.3% N/A N/A 80.7% 64.0% 90.0% 66.7% 76.1% N/A 78.4% N/A N/A 94.4% N/A 67.2%
libacl (69.99%) 58.8% N/A N/A 63.9% 71.7% N/A 60.0% 36.8% 100.0% 57.9% N/A N/A N/A N/A 61.1%
librt (71.64%) 69.4% N/A N/A 64.8% 76.3% 60.0% 50.0% 65.4% N/A 62.5% 0.0% N/A 66.7% 72.7% 78.1%
libpcre (10.15%) 17.1% N/A N/A 25.0% 16.9% 10.0% 30.0% 7.7% N/A 33.3% N/A 50.0% 0.0% N/A 21.4%
libc (28.28%) 59.8% 50.0% 0.0% 63.5% 56.7% 58.8% 55.5% 62.6% 63.7% 44.6% 38.5% 25.0% 57.6% 58.7% 65.3%
libattr (38.17%) 63.4% N/A N/A 50.0% 100.0% 100.0% 100.0% 45.5% 100.0% 100.0% N/A N/A N/A N/A 38.5%
libgmp (46.43%) 65.5% N/A N/A 86.3% 59.6% 79.7% 73.8% 71.4% 38.9% 72.4% 0.0% 100.0% 85.7% N/A 70.9%
libgcc (92.26%) 95.0% 80.0% N/A 95.5% 100.0% 86.0% 88.9% 96.2% N/A 100.0% N/A N/A N/A N/A 96.9%
libcap (49.97%) 60.2% N/A N/A 40.9% 50.0% N/A 87.5% 61.5% N/A 40.0% N/A N/A N/A N/A 61.9%

MySQL
libm (44.25%) 52.8% N/A N/A N/A 19.2% 0.0% 0.0% 52.2% 0.0% 100.0% N/A N/A N/A N/A 58.9%
libpthread (34.33%) 49.4% N/A N/A 53.5% 54.2% 62.5% 43.2% 37.5% 100.0% 51.2% 0.0% N/A N/A 46.5% 46.2%
libz (29.37%) 58.5% N/A N/A 53.1% 62.0% 37.0% 60.0% 52.9% 50.0% 72.7% N/A N/A 37.5% N/A 56.2%
libc (34.23%) 67.0% 91.7% 0.0% 67.0% 66.4% 64.3% 56.3% 67.6% 63.2% 54.7% 61.5% 25.0% 50.0% 60.0% 72.5%
libgcc (56.10%) 42.3% 0.0% N/A 39.8% 49.2% 19.3% 11.1% 66.0% N/A 40.0% N/A N/A N/A N/A 56.2%
libstdc++ (45.04%) 77.5% 0.0% 0.0% 46.2% 76.8% 70.4% 60.5% 69.1% 58.3% 37.9% 100.0% 100.0% 33.3% N/A 76.7%
libdl (26.70%) 40.2% N/A N/A 42.9% 31.8% 0.0% 33.3% 50.0% N/A 0.0% N/A N/A 50.0% N/A 41.9%
libcrypt (4.30%) 20.2% N/A N/A 25.0% 20.7% N/A 0.0% 21.4% N/A N/A N/A N/A N/A N/A 23.1%

Nginx
libpthread (47.75%) 50.3% N/A N/A 51.2% 47.9% 62.5% 54.1% 43.8% 100.0% 41.9% 0.0% N/A N/A 46.5% 55.0%
libz (60.91%) 77.2% N/A N/A 68.8% 87.0% 51.9% 64.0% 67.6% 50.0% 81.8% N/A N/A 50.0% N/A 78.1%
libc (40.78%) 73.8% 91.7% 0.0% 71.0% 74.0% 71.8% 70.2% 74.8% 70.9% 62.6% 69.2% 25.0% 62.1% 60.0% 79.2%
libdl (26.70%) 40.2% N/A N/A 42.9% 31.8% 0.0% 33.3% 50.0% N/A 0.0% N/A N/A 50.0% N/A 41.9%
libpcre (10.09%) 17.1% N/A N/A 25.0% 16.9% 10.0% 30.0% 7.7% N/A 33.3% N/A 50.0% 0.0% N/A 21.4%
libcrypt (6.42%) 20.2% N/A N/A 25.0% 20.7% N/A 0.0% 21.4% N/A N/A N/A N/A N/A N/A 23.1%
libcrypto (83.56%) 93.1% N/A 0.0% 92.0% 93.5% 86.7% 91.0% 93.4% 100.0% 96.1% 97.1% 82.4% 72.5% N/A 94.4%

or the stack), Memory (memory read/write), Arithmetic+Mem. (arithmetic computations with memory
operands), Logic (logic computations), and Branch (indirect JMP/CALL), even on applications that
experience moderate code reduction rates, such as Coreutils, as shown in Table 4 (underlined entries).

Gadget reduction. When CFI is not present many more gadgets are available to attackers, so Nibbler can
achieve complete gadget elimination in less cases. Table 5 summarizes our findings regarding conventional
gadgets. Similar to the previous case, the reduction of gadgets is analogous to the achieved code reduction.
Again, Nibbler seems to be very effective on certain gadget classes, like Branch, where the achieved gadget
reduction is (on average) a bit higher than the respective code reduction. Similarly, Stack Pivot and Stack
Lift gadgets, in certain real-world applications, such as Coreutils and MySQL, are reduced considerably
(again on average) or eliminated completely (e.g., libdl in Coreutils). Our results indicate that although
Nibbler does not entirely protect against code reuse, it raises the bar significantly for an attacker that
tries to automatically stitch together code snippets to mount a ROP/JOP/COP attack [22, 76, 77, 79];
and it achieves this with practically zero run-time performance overhead.

Table 5. Gadget reduction results. The percentages correspond to removed gadgets (thinned vs. vanilla). Entries marked
with ‘N/A’ indicate absence of certain gadget classes in vanilla.

Suite Total
Gadget Type

Stack Load Reg. Memory Arithmetic Logic Branch Syscall NOP
Pivot Lift Reg. Stack Load Store Reg. Mem. Reg. Mem. jmp call

SPEC
libpthread (92.79%) 96.1% 100.0% 95.9% 97.8% 99.1% 100.0% 90.2% 93.1% 96.1% 93.3% 99.2% 96.2% 80.0% 96.5% 95.8%
libm (39.76%) 48.4% 28.6% 44.3% 53.5% 30.5% 75.6% 39.4% 54.3% 47.3% 72.2% 44.9% 45.9% 55.9% 71.4% 40.8%
libc (42.01%) 51.8% 68.9% 30.2% 63.5% 68.8% 38.3% 39.5% 53.4% 47.1% 59.7% 56.8% 41.0% 57.8% 76.6% 48.9%
libgcc (72.35%) 75.8% 55.4% 84.9% 62.9% 53.7% 32.0% 75.5% 83.9% 74.8% 91.0% 74.0% 86.2% 14.3% 0.0% 77.7%
libstdc++ (48.88%) 63.9% 67.4% 46.2% 60.4% 67.5% 51.1% 69.3% 72.5% 68.5% 68.2% 72.9% 56.5% 52.9% 50.0% 68.2%

Coreutils
libpthread (39.94%) 50.4% 51.5% 46.5% 53.1% 50.1% 44.1% 59.8% 44.6% 49.9% 56.9% 43.2% 48.8% 0.0% 44.2% 55.2%
libdl (75.41%) 85.5% 100.0% 100.0% 92.3% 88.9% 100.0% 90.0% 85.2% 93.3% 91.3% 50.0% 76.9% 80.0% N/A 77.3%
libselinux (53.13%) 67.3% 64.7% 52.9% 62.0% 63.2% 80.7% 84.7% 65.2% 64.2% 84.1% 79.9% 62.2% 91.8% N/A 63.8%
libacl (69.99%) 70.4% 60.0% 74.4% 80.0% 65.9% 69.2% 57.1% 52.7% 86.5% 78.2% 73.5% 73.9% 91.4% N/A 67.6%
librt (71.64%) 70.3% 80.8% 85.2% 70.3% 77.2% 40.0% 79.7% 62.6% 59.7% 66.7% 73.7% 81.0% 50.0% 66.7% 69.3%
libpcre (10.15%) 12.1% 22.6% 10.2% 15.2% 7.9% 16.7% 21.2% 11.5% 11.3% 22.6% 12.9% 8.1% 12.8% 0.0% 16.0%
libc (28.28%) 38.6% 45.0% 21.8% 49.0% 45.9% 33.4% 31.0% 44.5% 35.2% 47.3% 43.7% 28.5% 50.1% 49.1% 36.2%
libattr (38.17%) 32.4% 68.4% 50.0% 10.0% 71.1% 0.0% 22.2% 37.9% 25.7% 18.2% 25.0% 16.7% 0.0% N/A 46.1%
libgmp (46.43%) 57.3% 61.9% 49.2% 65.7% 60.0% 42.6% 48.3% 66.0% 55.6% 55.0% 63.2% 52.2% 48.2% N/A 55.1%
libgcc (92.26%) 98.2% 95.9% 99.6% 99.0% 99.0% 92.8% 98.0% 97.6% 99.3% 99.2% 98.0% 98.7% 85.7% 100.0% 97.5%
libcap (49.97%) 56.8% 62.5% 60.0% 75.9% 54.1% 100.0% 78.6% 50.8% 29.2% 50.0% 50.0% 54.5% 20.0% 100.0% 51.9%

MySQL
libm (44.25%) 49.9% 29.9% 45.4% 54.7% 32.4% 75.6% 41.8% 55.8% 47.9% 71.9% 46.4% 51.6% 55.9% 71.4% 42.4%
libpthread (34.33%) 44.4% 47.0% 37.8% 48.6% 45.6% 44.1% 50.4% 39.9% 41.4% 50.5% 43.9% 38.7% 0.0% 40.7% 46.6%
libz (29.37%) 47.8% 38.9% 22.6% 63.6% 40.7% 79.8% 57.8% 57.3% 43.3% 66.0% 27.3% 39.6% 59.3% N/A 51.6%
libc (34.23%) 42.5% 55.5% 26.1% 53.2% 54.3% 30.4% 30.7% 45.3% 38.0% 48.9% 45.3% 34.3% 44.5% 57.0% 41.0%
libgcc (56.10%) 61.1% 44.6% 59.9% 60.9% 40.1% 22.7% 46.9% 72.1% 53.6% 81.2% 62.0% 73.3% 14.3% 0.0% 63.7%
libstdc++ (45.04%) 59.0% 60.5% 39.1% 54.4% 62.2% 46.9% 64.8% 68.9% 63.4% 64.4% 64.9% 53.2% 49.7% 50.0% 63.6%
libdl (26.70%) 38.6% 0.0% 0.0% 35.9% 27.8% 78.3% 43.3% 37.0% 68.3% 56.5% 0.0% 46.2% 33.3% N/A 33.3%
libcrypt (4.30%) 7.3% 14.3% 5.0% 6.2% 9.5% 25.0% 0.0% 10.9% 4.0% 0.0% 8.7% 0.0% 0.0% 0.0% 5.7%

Nginx
libpthread (47.75%) 49.3% 48.5% 49.4% 47.2% 49.7% 42.6% 54.1% 43.2% 51.5% 55.1% 47.0% 52.5% 0.0% 43.0% 53.5%
libz (60.91%) 69.5% 63.9% 53.8% 80.3% 60.7% 87.9% 67.5% 81.1% 62.2% 78.7% 78.2% 66.7% 70.4% N/A 74.3%
libc (40.78%) 49.2% 64.0% 32.3% 58.2% 64.0% 38.1% 36.1% 51.9% 44.5% 56.5% 58.0% 39.3% 58.0% 59.4% 46.7%
libdl (26.70%) 38.6% 0.0% 0.0% 35.9% 27.8% 78.3% 43.3% 37.0% 68.3% 56.5% 0.0% 46.2% 33.3% N/A 33.3%
libpcre (10.09%) 11.5% 22.6% 10.2% 14.2% 7.9% 16.2% 17.6% 11.1% 10.3% 19.2% 12.2% 7.9% 12.8% 0.0% 15.0%
libcrypt (6.42%) 11.1% 25.0% 7.1% 6.2% 13.9% 25.0% 0.0% 10.9% 6.0% 25.0% 8.7% 0.0% 0.0% 0.0% 10.6%
libcrypto (83.56%) 89.2% 90.8% 80.7% 87.7% 92.3% 87.1% 85.8% 90.5% 79.3% 87.6% 88.3% 90.3% 83.3% 91.7% 89.3%

Effect on real-world exploits. We evaluated Nibbler against pre-compiled, real-world core-reuse
exploits. Specifically, we replicated: (1) a ROP-based exploit against Nginx (CVE-2013-20282), (2) a
ROP/ret2libc-based exploit against mcrypt (CVE-2012-44093), and (3) a ret2libc-based exploit
against Tinyproxy/glibc (CVE-2015-75474). Next, we nibbled the libraries of the applications and
re-tested the exploits. In all cases, Nibbler managed to stop the attack, by removing gadgets, required by
the exploit(s), or whole (libc) functions. Note that the attacker can easily modify their exploits to use
gadgets, or whole functions, from the residual code. The purpose of this experiment, however, was to
demonstrate that Nibbler can thwart canned exploits with no additional run-time overhead.

2https://github.com/danghvu/nginx-1.4.0
3https://www.exploit-db.com/exploits/22928/
4https://researchcenter.paloaltonetworks.com/2016/05/how-cve-2015-7547-glibc-getaddrinfo-can-bypass-aslr/

https://github.com/danghvu/nginx-1.4.0
https://www.exploit-db.com/exploits/22928/
https://researchcenter.paloaltonetworks.com/2016/05/how-cve-2015-7547-glibc-getaddrinfo-can-bypass-aslr/

Size (KB)

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Coreutils

SPEC

MySQL

Nginx

All

4504.62 KB

5492.85 KB

5449.57 KB

1740.07 KB

14683.43 KB

62163.21 KB

11597.15 KB

5016.08 KB

1679.26 KB

80455.69 KB

Code Reduction (%)

0 10 20 30 40 50 60 70 80 90 100

Coreutils

SPEC

MySQL

Nginx

All

50.67%

51.24%

15.64%

48.41%

50.32%

55.95%

52.63%

22.35%

50.21%

55.29%

Dynamic+Nibbler Static

Fig. 5. Comparison of total app. size (in KB; binaries + required libraries), when using Nibbler with dynamically-linked
binaries (shared libraries) vs. statically-linked binaries (library code is duplicated)—top x-axis. The hatched bars
correspond to average code reduction and standard deviation of total app. size across a set—bottom x-axis.

5.1.4 Comparison with Static Linking. Shared libraries have numerous advantages over static ones in real-
world deployments. Nevertheless, static linking, especially with the addition of link-time optimization [56]
(LTO), has the potential to eliminate even more code. We compare Nibbler with static linking to highlight
its debloating capabilities, as well as the large overhead associated with static linking. We statically linked
all applications in our set, and compared the total size of the statically-linked applications against the
dynamically-linked ones, with all their required libraries, after we have applied Nibbler. Figure 5 shows
the total size of each application set. On average, static linking reduces the size of the application by
50.32%, while Nibbler by 55.29%, indicating that our code elimination techniques approximate what can
be achieved through recompilation and static linking. However, if we look at the total code in the system,
the first (statically-linked) take 78.57 MB, while the latter (nibbled) only 14.34 MB.

Nibbler vs. LTO. LTO corresponds to inter-procedural optimizations, performed during linking, which
may eliminate even more code. To measure its effect, we built Nginx with LLVM/Clang (its LTO
implementation is more mature than GCC’s). We found that LTO does not significantly eliminate code,
when compared to static linking without LTO. Table 6 summarizes the debloating effects on library code.
We notice that LTO does not significantly eliminate code, as code attributed to libraries is reduced only
by 2.1%, compared to conventional static linking. Interestingly, certain libraries may require additional
functions/code when they are built statically, allowing Nibbler to achieve better results than static linking
with LTO in such cases (see libc and libcrypt in Table 6). In general, both types of static linkage
result in ≈10% less library code than Nibbler’s thinned libraries, indicating that our code elimination
techniques approximate the “optimal” reduction rate(s) sufficiently.

Table 6. Per-library debloating in Nginx with Nibbler, static linking, and LTO.

Code in Scope

of Functions (Size in KB)
Dynamic Nibbler Static Static+LTO

libcrypto 5085 317 33 33
(1155.25) (105.76) (22.14) (22.14)

libc 2889 921 1025 1025
(1172.84) (683.24) (697.08) (697.08)

libpthread 297 142 55 55
(49.43) (25.69) (6.01) (6.01)

libz 140 46 66 41
(84.55) (31.83) (40.01) (28.35)

libpcre 74 45 48 22
(158.82) (115.56) (122.57) (108.49)

libcrypt 39 28 37 37
(20.45) (19.29) (30.38) (30.38)

libdl 24 16 9 9
(2.54) (1.69) (0.06) (0.06)

Total (Lib.) 8548 1581 1270 1222
(2643.89) (990.07) (911.24) (892.51)

5.2 Large-Scale Debloating
To better understand code bloat at large, we ran Nibbler on (almost) all C/C++ applications in Debian
sid, with the goal of reporting on unused code across a complete Linux distribution. We chose Debian sid
(i.e., the development distribution of Debian) due to its high availability of debug symbol packages [99].

At the time of writing, Debian sid contained over 50K x86-64 packages, distributed over three major
repositories: main, contrib, and nonfree. The first step in our analysis involved identifying the list of
packages that contained executable C/C++ binaries. To build a list of candidate packages, we excluded
packages that did not contain executable code by definition, including: documentation packages (*-doc);
development headers (*-dev); debug symbols (*-dbg, *-dbgsym); metapackages and virtual packages;
architecture-agnostic packages (architecture type ‘all’), which cannot include x86-64 binaries; kernel
packages; and packages that contain only shared libraries. Note that shared libraries and other excluded
packages can be installed during processing as dependencies of candidate packages.

We performed our analysis using the Egalito-based implementation of Nibbler, on a single host, armed
with an 8-core AMD Ryzen 2700X 3.7GHz CPU with 64GB of RAM, running Arch Linux (kernel v5.2).
For each candidate package, we install the package itself, its dependencies, and all required debug symbols,
and run Nibbler on each binary included. The median time to process each binary is around 20s, with
90% of binaries completing in under 200s—this is a substantial improvement over our older, Python-based
prototype (see Sec. 4), which required more than 60s per binary [2]. In total, we processed 34537 binaries
across 8641 packages, of which 30631 (≈ 91.7%) could be analyzed successfully (the rest 8.3% corresponds
to binaries with missing symbols, non-C/C++ code, etc.). Across the set of all the successfully-analyzed
binaries, we observed 5295 unique dynamic shared libraries.

Bloat in Popular Libraries. For each binary, Nibbler reports the set of libraries used by the application,
the total set of functions in each library, and the set of functions that are unused and can be removed.
We aggregate these results across all the ≈30K considered binaries to determine and characterize code
bloat at large (i.e., across the whole Debian distribution).

0 10 20 30 40 50 60 70 80 90 100
Percentage of bytes erased

libX11 (7148)

libxcb (7264)

libXdmcp (7267)

libXau (7281)

libbsd (7427)

librt (9025)

libnss_db (9394)

libdb-5 (9516)

libnss_resolve (9877)

libnss_mdns4_minimal (9877)

libnss_dns (9877)

libstdc++ (11555)

libresolv (11636)

libz (12454)

libgcc_s (12962)

libdl (18433)

libm (19261)

libnss_files (19627)

libpthread (21392)

libc (30630)

Median Union

Fig. 6. Unused code (x-axis) in the 20 most popular libraries (y-axis) in Debian sid. Numbers in parenthesis indicate
the no. of binaries (out of the 30631 analyzed) using the respective library.

Figure 6 shows the distribution of the amount of code removed (x-axis) for the top 20 libraries observed
(y-axis), as a percentage of their total size. (Shared libraries are ranked based on the number of packages
they link-with.) With one exception, all the binaries we analyzed (i.e., 30631) link-with libc; the exception
is the binary mtcp_restart, an executable with no shared library dependencies.

0 10 20 30 40 50 60 70 80 90 100
Percentage of bytes erased

libcrypto++ (25)

libssl3 (298)

libnss3 (575)

libssl (1858)

libgnutls (2999)

libcrypto (3248)

libgcrypt (4928)

Median Union

Fig. 7. Unused code (x-axis) in cryptographic libraries in Debian sid. Libraries (y-axis) used by ≤ 20 packages are
excluded. Numbers in parenthesis indicate the no. of binaries (out of the 30631 analyzed) using the respective library.

For libc, we observe that the median amount of code removed, per binary, is ≈35%, with most binaries
individually not requiring 20%–42% of its code. The next most popular libraries are libpthread and
libnss_files, used by ≈20K and ≈19K binaries, respectively, demonstrating much wider distributions
(i.e., 27%–76% and 47%–99%), similarly to libresolv and libstd++ (37%–99%, 52%–94%). In contrast,
libnss_resolve (≈9K% binaries) has a very tight distribution with a median of only ≈5% of code
removed, owing to the relatively small number of functions it exports and their tight coupling (i.e., all
variations of gethostbyname and gethostbyaddr). libm, libdl, librt, and libbsd also exhibit tight
distributions, with a median of ≈54%, ≈29%, ≈97%, and ≈99% of code removed, respectively.

Beyond per-binary metrics, we can gain further insights by considering the union of all functions
required across all binaries in the distribution, which identifies code not used by (almost) any binary in
the system. Accordingly, the union amount of code to remove is always lower than the median reported in
Figure 6. For libc, we observe that ≈5% of its code is unused across all binaries. As another example, the
popular NSS [53] libraries libnss_dns and libnss_db have nearly 50% unused code across all binaries;
likewise, libxcb and libstd++ exhibit ≈46% and ≈38% unused code across all binaries.

Lastly, Figure 7 and Figure 8 illustrate the effect of Nibbler on popular cryptographic, and X11, libraries,
across the whole Debian distribution. More importantly, our results indicate that Nibbler can be used
to replace the 5295 unique dynamic shared libraries, in Debian sid, with their “unionized” equivalents,
without affecting the functionality of any binary (out of the 30631 analyzed), while removing ≈420MB
(≈1.6M functions) of code in total.

5.3 Contained Debloating
To assess the amount of code bloat in commonly-distributed sets of Linux binaries, we used Nibbler to
examine packages from popular container images published in the Docker Hub repository [29]. Rather
than analyzing binaries in each image directly, we leverage our existing dataset and infrastructure for
processing Debian sid packages (Sec. 5.2) to provide an equivalent analysis. Specifically, we used the
container images to identify sets of binaries to consider from our Debian sid dataset. By examining the
union of library functions removed, across all binaries in each set, we can we can quantify the total set of
unused code across all libraries in the published container image.

0 10 20 30 40 50 60 70 80 90 100
Percentage of bytes erased

libXaw (121)

libXss (324)

libXmu (351)

libXxf86vm (394)

libXt (404)

libXft (414)

libXpm (724)

libXdamage (1514)

libXcomposite (1518)

libXi (1782)

libXcursor (1788)

libXrandr (1790)

libXfixes (1831)

libX11-xcb (1885)

libXinerama (1909)

libXrender (2593)

libXext (3201)

libX11 (7148)

libXdmcp (7267)

libXau (7281)

Median Union

Fig. 8. Unused code (x-axis) in X11 libraries in Debian sid. Libraries (y-axis) used by ≤ 20 packages are excluded.
Numbers in parenthesis indicate the no. of binaries (out of the 30631 analyzed) using the respective library.

We selected 9 official Docker images for popular C/C++ applications, each with > 10M downloads,
on Docker Hub. To simplify the process of translating packages in the container’s base distribution to
Debian package names, we selected container images that were built from distributions using the apt
package manager. For each container image, we mapped each binary to its providing package using
dpkg, and then looked up the equivalent sid package in our dataset. Across all images, we considered
a total of 255 unique packages. Mappings for all but 11 packages could be resolved automatically—we
manually resolved the remainder, which differed only by version numbers (e.g., mariadb-server-10.3
vs. mariadb-server-10.4). While this mapping between Linux distributions does not provide an exact
representation of the unused code included in the container images, it does provide a tight approximation
of code bloat across a commonly-installed set of packages in popular Docker images.

Table 7. Erasure for Docker images (using packages from Debian sid).

Bytes (KB) Functions

Image Bins Libs Total Erased % Total Erased %

haproxy 293 62 15247.06 3565.83 23.39 46822 17000 36.31
influxdb 309 83 16778.82 3397.27 20.25 52240 16822 32.20
mariadb 394 84 17466.90 3790.69 21.70 53231 18364 34.50
memcached 292 61 13683.17 3393.47 24.80 39621 14606 36.86
nginx 294 59 13425.71 3263.02 24.30 38531 13953 36.21
postgres 363 83 21047.71 4808.17 22.84 69125 23817 34.45
redis 295 68 15886.73 3649.33 22.97 47964 17367 36.21
spiped 296 60 14828.60 3590.70 24.21 44949 17048 37.93
ubuntu 310 61 13549.62 3292.48 24.30 39077 14261 36.49

Arithmetic mean 15768.26 3638.99 23.20 47951 17026 35.69
Geometric mean 15613.71 3615.18 23.15 47177 16818 35.65

Table 7 shows the union amount of code removed across all libraries in each container image. Every
image used roughly 300 binaries and less than 100 shared libraries. Across all images, we observe that
an average of 23.2% of code (in terms of by bytes) is unused. All images exhibited roughly the same
amount of bloat, with image-wide union values within 4% of each other. The majority of this bloat is due
to common system libraries used in each image, rather than application-specific libraries—we leave the
analysis of comparing ancillary utilities and binaries required for the application’s use-case as a future
study. Interestingly, in 7 out of the 9 images, the library with the most code removed (> 94%) was
libunistring [32], a common library for handling Unicode. Conversely, all images utilized one library
which had no code removed, i.e., libdebconfclient [26], which is used by dpkg. Overall, our results
demonstrate opportunities for reducing code bloat, using Nibbler, in commonly-used container images.

5.4 Reduction with Application-Loaded Libraries
Chromium (web browser; v57) is a large, complex application that performs manual library loading. To
debloat it, we profile it by: i) visiting the top sites in Alexa’s “Top 500 Global Sites” list [4], exercising a
broad range of functionality, such as video playback, animations, etc., and ii) using Chromium’s compre-
hensive test suite [89], which includes a plethora of tests related to layout and rendering, conformance
to certain web standards, UI events, and Chrome-specific APIs. During profiling the browser loaded 63
additional libraries. After including the used symbols in Nibbler, we included an additional 3241 functions
or approximately 1MB of code. Table 8 lists the 10 (out of 84) most thinned libraries and total code
reduction in Chromium. Finally, we browsed the top-10 sites in Alexa’s list, which did not result in new
libraries being loaded. Our experiment confirms the results of previous work [70], which showed that
profiling can be sufficient to debloat manually-loaded libraries in certain applications.

Note, however, that by employing our value-tracking approach (see Sec. 3.7), Nibbler can statically
resolve ≈89% of all dlsym() arguments, and ≈37% of all dlopen() arguments, across the ≈30K binaries
and ≈5K unique shared libraries in Debian sid (see Sec. 5.2).

Table 8. 10 most debloated libraries in Chromium.

Library Unused Code

Functions Bytes

libgtk 4886 (49.06%) 994.70 KB (41.03%)
libxml2 1260 (48.26%) 423.87 KB (46.70%)
libc 1606 (46.93%) 316.35 KB (26.25%)
libgio 1749 (38.65%) 289.00 KB (35.13%)
libgnutls 826 (36.26%) 212.32 KB (27.76%)
libnss3 2763 (70.56%) 172.14 KB (18.05%)
libbglib 840 (40.64%) 154.70 KB (32.37%)
libasound 1053 (36.15%) 152.99 KB (27.61%)
libm 375 (61.68%) 137.77 KB (32.00%)
libstdc++ 842 (28.45%) 115.45 KB (22.47%)
libX11 433 (22.29%) 111.08 KB (19.95%)

Total 20946 (34.95%) 4198.22 KB (25.98%)

6 Limitations
Exploit disruption. In Sec. 5.1.3, we tested our nibbled applications against pre-compiled, real-world
code-reuse exploits. In all cases, Nibbler disrupted the respective exploit; however, attackers can modify
them to use other gadgets and potentially restore their capabilities. Debloating, even when combined
with CFI, cannot block all code-reuse attacks, but it does make libraries a less fertile ground for gadget
harvesting. Exploits are more likely to be prevented by combining Nibbler with a system like Shuffler [101].

Attack-surface reduction. Previous work [70] suggested that debloating can reduce the attack surface
by removing vulnerabilities contained in the erased library code. Nibbler performs a similar type of
debloating on binary code. However, we did not reach to the same conclusion. By design, both works
remove code only when there is no viable execution path to that code for a given application. Consequently,
any code removed is essentially unreachable code, so vulnerabilities contained within are not relevant
because they can never be triggered by external input(s). We do agree, however, that such vulnerabilities
can potentially be used by multistage exploits, where later stage exploit components (ab)use vulnerabilities
in unused code to escape sandboxing or further elevate privileges [21].

7 Related Work

7.1 Code Reduction
Recent work from Quach et al. [70] proposes a compiler-based framework for debloating applications when
source code is available, while Nibbler [2] targets binary-only software. Other differences with Nibbler
include the following: (i) their approach is unable to work with (one of) the most commonly used libraries,
GNU libc (glibc), which requires the GNU C compiler, while Nibbler is compiler-agnostic, (ii) their
approach opts to debloat each application individually, which incurs significant memory overhead when
applied to numerous applications, as it breaks the sharing of memory pages that include erased code
per-application instantiation, (iii) they debloat applications at load time, which incurs a slowdown of 20x,
and, even though the overhead for launching one application is negligible in absolute terms, it compounds
in applications that spawn others (e.g., shell scripts), and (iv) Nibbler goes beyond CFI by demonstrating
one of the key benefits of debloating by integrating it with continuous code re-randomization.

CodeFreeze [62] aims to reduce the attack surface of Windows binaries by removing unused code in
shared libraries (DLLs). It utilizes bounded address tracking [47] to resolve function pointers, which leads
to over-restrictive CFGs. As a result, while it is more aggressive at removing code, it can erroneously
remove needed functions (e.g., constructors) and it depends on whitelisting to avoid crashes. Instead,
Nibbler’s analysis is conservative and errs on the safe side by over-approximating. Our evaluation shows
that we can correctly trim libraries without the need for a whitelist. More recently, BinTrimmer [73]
introduced a new value range analysis technique, called signedness-agnostic strided interval, allowing for
the construction of more precise CFGs (compared to CodeFreeze) to conservatively remove unused code.

Perses [85] and C-Reduce [74] are state-of-the-art program reduction tools that build upon the concept
of (hierarchical) delta debugging [60, 106]. Specifically, by specifying a program to be minimized and
an arbitrary property test function, both these tools return a minimized version of the input program
that is also correct with respect to the given property. Chisel [40] further improves this approach, by
leveraging reinforcement learning. In particular, via repeated trial and error, Chisel builds (and further
rectifies) a model that determines the likelihood of a candidate (minimal) program to pass the property
test. Razor [69], on the other hand, leverages application test suites, coupled with a set of related-code
inference heuristics, to specialize binary applications while supporting user-expected functionality.

In antithesis to tools like the above, Nibbler does not require any high-level specification regarding the
functionality of the input program/library. Our thinned libraries are guaranteed to be correct under any
given input to the set of applications that uses them. Kurmus et al. [49] focus on reducing the attack
surface of the Linux kernel by removing unnecessary features. Unlike Nibbler, they develop a tool-assisted
approach for identifying and removing unnecessary features during the kernel’s configuration phase,
hence, omitting code during compilation. Ghaffarinia and Hamlen [34] introduce control-flow trimming, a
concept that builds upon runtime tracing, machine learning, in-lined reference monitoring, and contextual
control-flow integrity enforcement, to automatically remove features from binary applications.

A series of works [9, 44, 45, 94] have focused on reducing bloat in PHP and Java programs, and the
Java Virtual Machine (JVM). JRed [44] employs static analysis to extract the FCG of applications
and identify, and remove, the bytecode that corresponds to unused classes and methods from the Java
runtime. Similarly, Wagner et al. [94] propose “slimming” the JVM by removing code that does not
execute frequently and dynamically fetching it from a server only when it is required. The goal is to
reduce the amount of code that needs to be deployed in thin clients, such as embedded systems, by
dynamically deploying what is required. Jiang et al. [45], instead of targeting the JVM, aim to cut specific
features that are not needed from Java programs. Starting from a small set of methods responsible for
implementing a feature, they use static analysis and backwards slicing to identify and remove all the
code corresponding to the feature. While these approaches also utilize static analyses, decompiling and
reconstructing the FCG of Java, or PHP, programs is less challenging than handling binary code [9, 39].

Landsborough et al. [50] also propose removing unused features from programs to reduce their attack
surface. Their approach involves manually disabling features in binaries and a genetic algorithm that is
applied in toy programs. Malecha et al. propose software winnowing [57], an approach that uses partial
evaluation of function arguments during compilation to “specialize” code, eliminating some unused code
in the process. In the same vein, TRIMMER [81] specializes program code, and debloats applications,
by leveraging user-defined configurations, while Shredder [61] further introduces constant propagation
analyses to specialize system API functions. Lastly, Koo et al. [48] propose the concept of configuration-
based software debloating: i.e., the removal of feature-specific code, which is exclusively used only when
certain configuration directives are specified/enabled. These approaches are orthogonal to Nibbler, looking
at software thinning from a different perspective, while most of them (with the exception of Shredder)
require access to source code.

Lastly, other works approach debloating from a performance angle, focusing on reducing memory
consumption [15, 65, 105]. Despite the similarity in name, slim binaries [33], proposed by Franz et al.,
refer to programs that are represented in an way that allows their translation to multiple architectures.

7.2 FCG Extraction
Sound and complete extraction of the FCG from binaries is an open problem. Murphy et al. [63] perform
an empirical analysis of static call-graph extractors that operate on source code or at compile time.
Their findings indicate that there is significant variance, based on the tool, and the potential for false
negatives. The latter correspond to undiscovered but existing call edges, which would be problematic
for our approach, as removal of used code can be catastrophic. As existing FCG extraction methods are
insufficient, we developed our own method that is complete. There are also various promising binary
analysis and augmentation frameworks [6, 13, 14, 28] that reconstruct the FCG of binaries. Even though
these tools keep improving, errors are still possible per their authors, as well as other researchers [8]. As
such, their analyses are not appropriate for Nibbler. Instead, the methods described in hardening works
for binaries [102, 107, 108] are more related to our approach. Unlike them though, we introduce a novel
methodology for eliminating AT functions—thereby deleting extraneous CFG edges—and reconstruct a
complete FCG that also includes directs calls within and across modules.

8 Conclusion
In this paper, we presented Nibbler, a system which demonstrates that debloating binary-only applications
is possible and practical. We evaluated the debloating capabilities of Nibbler with real-world binaries
and the SPEC CINT2006 suite, eliminating 56% and 82% of functions and code, respectively, from used
libraries. Nibbler is able to correctly analyze binary software, by only leveraging symbol and relocation
information produced by existing compilers. In addition, we applied Nibbler on ≈30K C/C++ binaries
and ≈5K unique dynamic shared libraries (i.e., almost in the complete Debian sid distribution), as well as
on 9 official Docker images (with millions of downloads in Docker Hub), reporting findings regarding code
bloat at large. Nibbler, and debloating generally, improves security of software indirectly, by benefiting
defenses. Continuous code re-randomization systems get a performance boost, which we demonstrated by
integrating Nibbler with Shuffler to lower overhead by 20%. Lower overheads make such defenses more
attractive for deployment on production systems, or can be used to provide stricter security guarantees
(e.g., by raising re-randomization frequency) in critical systems. Control-flow integrity defenses also
benefit, because we remove code involved in allowable control-flows. Our evaluation shows that Nibbler
reduces the number of gadgets reachable through returns and indirect calls by 75% and 49% on average.

Availability
Our prototype implementation is available at: https://gitlab.com/brown-ssl/libfilter

Acknowledgments
We thank the anonymous reviewers for their valuable feedback. This work was supported by the Office of
Naval Research (ONR) and the Defense Advanced Research Projects Agency (DARPA) through awards
N00014-16-1-2261, N00014-17-1-2788, and HR001118C0017. Any opinions, findings, and conclusions or
recommendations expressed herein are those of the authors and do not necessarily reflect the views of the
US government, ONR, or DARPA.

https://gitlab.com/brown-ssl/libfilter

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow Integrity. In Proc. of ACM CCS.

340–353.
[2] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Georgios Portokalidis. 2019. Nibbler:

Debloating Binary Shared Libraries. In Proc. of ACSAC. 70–83.
[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and

Tools (2nd ed.). Pearson Education.
[4] Alexa. 2018. The top 500 sites on the web. https://www.alexa.com/topsites.
[5] Jim Alves-Foss and Jia Song. 2019. Function Boundary Detection in Stripped Binaries. In Proc. of ACSAC. 84–96.
[6] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen, Nathan Giles, and Rajeev Barua. 2013.

A Compiler-level Intermediate Representation Based Binary Analysis and Rewriting System. In Proc. of EuroSys.
295–308.

[7] Starr Andersen and Vincent Abella. 2004. Changes to Functionality in Microsoft Windows XP Service Pack 2, Part 3:
Memory Protection Technologies, Data Execution Prevention. Microsoft TechNet Library. http://technet.microsoft.
com/en-us/library/bb457155.aspx

[8] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert Bos. 2016. An In-Depth Analysis of
Disassembly on Full-Scale x86/x64 Binaries. In Proc. of USENIX SEC. 583–600.

[9] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More: Quantifying the Security Benefits of
Debloating Web Applications. In Proc. of USENIX SEC. 1697–1714.

[10] Eli Bendersky. [n.d.]. pyelftools – Parsing ELF and DWARF in Python. https://github.com/eliben/pyelftools.
[11] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed Okhravi. 2015. Timely Rerandomization

for Mitigating Memory Disclosures. In Proc. of ACM CCS. 268–279.
[12] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh. 2014. Hacking Blind. In Proc. of

IEEE S&P. 227–242.
[13] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011. BAP: A Binary Analysis Platform.

In Proc. of CAV. 463–469.
[14] David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo. 2013. Native x86 Decompilation Using

Semantics-Preserving Structural Analysis and Iterative Control-Flow Structuring. In Proc. of USENIX SEC. 353–368.
[15] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J. Carey. 2013. A Bloat-aware Design for Big Data Applications.

In Proc. of ISMM. 119–130.
[16] Amat Cama. 2014. Tool to generate ROP gadgets for ARM, AARCH64, x86, MIPS, PPC, RISCV, SH4 and SPARC.

https://github.com/acama/xrop.
[17] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. 2015. Control-Flow Bending:

On the Effectiveness of Control-Flow Integrity. In Proc. of USENIX SEC. 161–176.
[18] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012. Unleashing Mayhem on Binary

Code. In Proc. of IEEE S&P. 380–394.
[19] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham, and Marcel Winandy.

2010. Return-Oriented Programming Without Returns. In Proc. of ACM CCS. 559–572.
[20] Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor: Virtualizing the Code Space to Counter Disclosure

Attacks. In Proc. of IEEE EuroS&P. 514–529.
[21] Chromium Blog . 2012. A Tale of Two Pwnies. https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html.
[22] Corelan. 2011. Corelan Repository for mona.py. https://github.com/corelan/mona.
[23] Stephen Crane, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. Booby Trapping Software. In Proc. of NSPW.

95–106.
[24] National Vulnerability Database. 2019. BlueKeep Vulnerability (CVE-2019-0708). NIST. https://nvd.nist.gov/vuln/

detail/CVE-2019-0708
[25] Bruce Dawson. 2013. Symbols on Linux update: Fedora Fixes. https://randomascii.wordpress.com/2013/03/05/

symbols-on-linux-update-fedora-fixes/
[26] Debian. [n.d.]. Package: cdebconf. https://packages.debian.org/sid/cdebconf.
[27] Solar Designer. 1997. Getting around non-executable stack (and fix). BugTraq. https://seclists.org/bugtraq/1997/

Aug/63
[28] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020. RetroWrite: Statically Instrumenting COTS

Binaries for Fuzzing and Sanitization. In Proc. of IEEE S&P. 128–142.
[29] Docker. [n.d.]. Docker Hub. https://hub.docker.com.

https://www.alexa.com/topsites
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://github.com/eliben/pyelftools
https://github.com/acama/xrop
https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
https://github.com/corelan/mona
https://nvd.nist.gov/vuln/detail/CVE-2019-0708
https://nvd.nist.gov/vuln/detail/CVE-2019-0708
https://randomascii.wordpress.com/2013/03/05/symbols-on-linux-update-fedora-fixes/
https://randomascii.wordpress.com/2013/03/05/symbols-on-linux-update-fedora-fixes/
https://packages.debian.org/sid/cdebconf
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://hub.docker.com

[30] Ulrich Drepper. [n.d.]. ELF Symbol Versioning. https://www.akkadia.org/drepper/symbol-versioning.
[31] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard, Hamed Okhravi, and Stelios

Sidiroglou-Douskos. 2015. Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity. In Proc. of
ACM CCS. 901–913.

[32] Free Software Foundation. [n.d.]. libunistring. https://www.gnu.org/software/libunistring/.
[33] Michael Franz and Thomas Kistler. 1997. Slim Binaries. Commun. ACM 40, 12 (Dec. 1997), 87–94.
[34] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trimming. In Proc. of ACM CCS. 1009–1022.
[35] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012. Enhanced Operating System Security Through

Efficient and Fine-grained Address Space Randomization. In Proc. of USENIX SEC. 475–490.
[36] GNU Development Tools. [n.d.]. objdump – display information from object files. http://man7.org/linux/man-

pages/man1/objdump.1.html.
[37] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014. Out of Control: Overcoming

Control-Flow Integrity. In Proc. of IEEE S&P. 575–589.
[38] Enes Göktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Portokalidis, Thorsten Holz, Herbert Bos,

and Cristiano Giuffrida. 2018. Position-independent Code Reuse: On the Effectiveness of ASLR in the Absence of
Information Disclosure. In Proc. of IEEE EuroS&P. 227–242.

[39] James Hamilton and Sebastian Danicic. 2009. An Evaluation of Current Java Bytecode Decompilers. In Proc. of
IEEE SCAM. 129–136.

[40] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective Program Debloating via Reinforcement
Learning. In Proc. of ACM CCS. 380–394.

[41] Hex-Rays. 2016. The IDA Pro Disassembler and Debugger. https://www.hex-rays.com/products/ida/
[42] Patrick Horgan. [n.d.]. Linux x86 Program Start Up. http://dbp-consulting.com/tutorials/debugging/

linuxProgramStartup.html.
[43] Intel. 2013. System V Application Binary Interface. https://software.intel.com/sites/default/files/article/402129/mpx-

linux64-abi.pdf.
[44] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization and Bloatware Mitigation Based on

Static Analysis. In Proc. of IEEE COMPSAC. 12–21.
[45] Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. 2016. Feature-Based Software Customization: Preliminary

Analysis, Formalization, and Methods. In Proc. of IEEE HASE. 122–131.
[46] JoeDog. 2017. Siege – an http load tester and benchmarking utility. https://github.com/JoeDog/siege.
[47] Johannes Kinder and Helmut Veith. 2010. Precise Static Analysis of Untrusted Driver Binaries. In Proc. of FMCAD.

43–50.
[48] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019. Configuration-Driven Software Debloating.

In Proc. of EuroSec.
[49] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin Rothberg, Andreas Ruprecht,

Wolfgang Schröder-Preikschat, Daniel Lohmann, and Rüdiger Kapitza. 2013. Attack Surface Metrics and Automated
Compile-Time OS Kernel Tailoring. In Proc. of NDSS.

[50] Jason Landsborough, Stephen Harding, and Sunny Fugate. 2015. Removing the Kitchen Sink from Software. In Proc.
of ACM GECCO. 833–838.

[51] John R. Levine. 1999. Linkers and Loaders (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
[52] Percy Liang and Mayur Naik. 2011. Scaling Abstraction Refinement via Pruning. In Proc. of ACM PLDI. 590–601.
[53] The GNU C Library. [n.d.]. System Databases and Name Service Switch. https://www.gnu.org/software/libc/manual/

html_node/Name-Service-Switch.html.
[54] Linux Programmer’s Manual. 2018. rtld-audit – auditing API for the dynamic linker. http://man7.org/linux/man-

pages/man7/rtld-audit.7.html
[55] Generic Part Linux Standard Base Core Specification. [n.d.]. Exception Frames. https://refspecs.linuxbase.org/LSB_

5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html.
[56] LLVM Project. 2018. LLVM Link Time Optimization: Design and Implementation.
[57] Gregory Malecha, Ashish Gehani, and Natarajan Shankar. 2015. Automated Software Winnowing. In Proc. of ACM

SAC. 1504–1511.
[58] Microsoft. 2015. Control Flow Guard. Windows Dev Center. https://msdn.microsoft.com/en-us/library/windows/

desktop/mt637065(v=vs.85).aspx
[59] Microsoft. 2017. Symbols and Symbol Files. Microsoft Developer Network. https://msdn.microsoft.com/en-

us/library/ff558825.aspx
[60] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging. In Proc. of ICSE. 142–151.

https://www.akkadia.org/drepper/symbol-versioning
https://www.gnu.org/software/libunistring/
http://man7.org/linux/man-pages/man1/objdump.1.html
http://man7.org/linux/man-pages/man1/objdump.1.html
https://www.hex-rays.com/products/ida/
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://github.com/JoeDog/siege
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://man7.org/linux/man-pages/man7/rtld-audit.7.html
http://man7.org/linux/man-pages/man7/rtld-audit.7.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ff558825.aspx
https://msdn.microsoft.com/en-us/library/ff558825.aspx

[61] Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking Exploits through API Specialization. In Proc.
of ACSAC. ACM, 1–16.

[62] Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking Payloads with Runtime Code Stripping and Image
Freezing. BHUSA. https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-
and-image-freezing

[63] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan. 1998. An Empirical Study of Static Call
Graph Extractors. ACM Trans. Softw. Eng. Methodol. 7, 2 (April 1998), 158–191.

[64] National Security Agency. 2019. Ghidra. nsa.gov. https://www.nsa.gov/resources/everyone/ghidra/
[65] Khanh Nguyen and Guoqing Xu. 2013. Cachetor: Detecting Cacheable Data to Remove Bloat. In Proc of ACM

ESEC/FSE. 268–278.
[66] Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. In Proc. of ACM PLDI. 577–587.
[67] Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In Proc. of ACM CCS. 914–926.
[68] PaX Team. 2003. Address Space Layout Randomization (ASLR). https://pax.grsecurity.net/docs/aslr.txt
[69] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and Wenke Lee. 2019. RAZOR: A

Framework for Post-deployment Software Debloating. In Proc. of USENIX SEC. 1733–1750.
[70] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through Piece-Wise Compilation and Loading.

In Proc. of USENIX SEC. 869–886.
[71] Nguyen Anh Quynh. 2014. Capstone: Next-Gen Disassembly Framework. In BHUSA.
[72] Ganesan Ramalingam. 1994. The Undecidability of Aliasing. ACM Transactions on Programming Languages and

Systems (TOPLAS) 16, 5 (1994), 1467–1471.
[73] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna, and Christopher Kruegel. 2019.

Bintrimmer: Towards Static Binary Debloating Through Abstract Interpretation. In Proc. of DIMVA. 482–501.
[74] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case Reduction for C

Compiler Bugs. In Proc. of ACM PLDI. 335–346.
[75] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson, Stephen Crane, Christopher Liebchen,

Per Larsen, Lucas Davi, Michael Franz, Ahmad-Reza Sadeghi, and Hamed Okhravi. 2017. Address Oblivious Code
Reuse: On the Effectiveness of Leakage Resilient Diversity. In Proc. of NDSS.

[76] Jonathan Salwan. 2011. ROPgadget - Gadgets finder and auto-roper. http://shell-storm.org/project/ROPgadget/.
[77] Sascha Schirra. 2014. Ropper - rop gadget finder and binary information tool. https://scoding.de/ropper/.
[78] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. 2015.

Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.
In Proc. of IEEE S&P. 745–762.

[79] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: Exploit Hardening Made Easy. In Proc. of
USENIX SEC. 25–41.

[80] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-libc Without Function Calls (on
the x86). In Proc. of ACM CCS. 552–561.

[81] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018. TRIMMER: Application Specialization
for Code Debloating. In Proc. of ACM/IEEE ASE. ACM, 329–339.

[82] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis. In Proc. of IEEE S&P. 138–157.

[83] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, and Ahmad-Reza Sadeghi.
2013. Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout Randomization. In Proc.
of IEEE S&P. 574–588.

[84] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund, and Thomas Walter. 2009. Breaking
the Memory Secrecy Assumption. In Proc. of EuroSec.

[85] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018. Perses: Syntax-guided Program
Reduction. In Proc. of ICSE. 361–371.

[86] Debian The Universal Operating System. [n.d.]. The unstable distribution (“sid”). https://www.debian.org/releases/
sid/.

[87] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War in Memory. In Proc. of IEEE
S&P. 48–62.

[88] t0x0sh. 2014. A tool to help you write binary exploits. https://github.com/t00sh/rop-tool.
[89] The Chromium Projects. 2018. Testing and infrastructure. https://www.chromium.org/developers/testing

https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-and-image-freezing
https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-and-image-freezing
https://www.nsa.gov/resources/everyone/ghidra/
https://pax.grsecurity.net/docs/aslr.txt
http://shell-storm.org/project/ROPgadget/
https://scoding.de/ropper/
https://www.debian.org/releases/sid/
https://www.debian.org/releases/sid/
https://github.com/t00sh/rop-tool
https://www.chromium.org/developers/testing

[90] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike.
2014. Enforcing Forward-edge Control-Flow Integrity in GCC & LLVM. In Proc. of USENIX SEC. 941–955.

[91] TIS Committee. 1995. Tool Interface Standard (TIS), Executable and Linking Format (ELF) Specification (v1.2).
http://refspecs.linuxbase.org/elf/elf.pdf.

[92] Trail of Bits. 2019. McSema. GitHub. https://github.com/trailofbits/mcsema
[93] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos, and

Cristiano Giuffrida. 2015. Practical Context-Sensitive CFI. In Proc. of ACM CCS. 927–940.
[94] Gregor Wagner, Andreas Gal, and Michael Franz. 2011. “Slimming” a Java Virtual Machine by Way of Cold Code

Removal and Optimistic Partial Program Loading. Sci. Comput. Program. 76, 11 (Nov. 2011), 1037–1053.
[95] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul Grosen, Christopher Kruegel,

and Giovanni Vigna. 2017. Ramblr: Making Reassembly Great Again. In Proc. of NDSS.
[96] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling. In Proc. of USENIX SEC. 627–642.
[97] Zhe Wang, Chenggang Wu, Jianjun Li, Yuanming Lai, Xiangyu Zhang, Wei-Chung Hsu, and Yueqiang Cheng. 2017.

ReRanz: A Light-Weight Virtual Machine to Mitigate Memory Disclosure Attacks. In Proc. of ACM VEE. 143–156.
[98] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani Thuraisingham. 2011. Differentiating

Code from Data in x86 Binaries. In Proc. of ECML-PKDD. 522–536.
[99] Debian Wiki. [n.d.]. Using Symbols Files. https://wiki.debian.org/UsingSymbolsFiles.

[100] Ubuntu Wiki. [n.d.]. Debug Symbol Packages. https://wiki.ubuntu.com/Debug%20Symbol%20Packages.
[101] David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake, Xinhao Yuan, Patrick Colp, Michelle

Zheng, Vasileios P. Kemerlis, Junfeng Yang, and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code
Re-Randomization. In Proc. of USENIX OSDI. 367–382.

[102] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Patterson, Frank Spano, Yu Jian Wu,
Junfeng Yang, and Vasileios P. Kemerlis. 2020. Egalito: Layout-Agnostic Binary Recompilation. In Proc. of ASPLOS.
133–147.

[103] Windows Dev Center. 2018. PE Format. https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85)
.aspx.

[104] Patrick Wollgast, Robert Gawlik, Behrad Garmany, Benjamin Kollenda, and Thorsten Holz. 2016. Automated
Multi-Architectural Discovery of CFI-Resistant Code Gadgets. In Proc. of ESORICS. 602–620.

[105] Guoqing Xu. 2012. Finding Reusable Data Structures. In Proc. of ACM OOPSLA. 1017–1034.
[106] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-Inducing Input. IEEE Trans. Softw.

Eng. 28, 2 (February 2002), 183–200.
[107] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCamant, Dawn Song, and Wei Zou.

2013. Practical Control Flow Integrity and Randomization for Binary Executables. In Proc. of IEEE S&P. 559–573.
[108] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In Proc. of USENIX SEC. 337–352.

http://refspecs.linuxbase.org/elf/elf.pdf
https://github.com/trailofbits/mcsema
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Software Exploitation Techniques
	2.2 Continuous Code Re-Randomization
	2.3 Control-Flow Integrity Defenses

	3 Design
	3.1 Overview
	3.2 Disassembly
	3.3 Library FCG Reconstruction
	3.4 Unreachable Code Detection
	3.5 AT Function Pruning
	3.6 Function Erasure
	3.7 Application-Loaded Libraries
	3.8 Challenges

	4 Nibbler Implementation
	5 Evaluation
	5.1 Debloating Application Sets
	5.2 Large-Scale Debloating
	5.3 Contained Debloating
	5.4 Reduction with Application-Loaded Libraries

	6 Limitations
	7 Related Work
	7.1 Code Reduction
	7.2 FCG Extraction

	8 Conclusion
	Acknowledgments
	References

