
Switches are Monitors Too!
Stateful Property Monitoring as a Switch Design Criterion

Tim Nelson Nicholas DeMarinis Timothy Adam Hoff
Rodrigo Fonseca Shriram Krishnamurthi

Brown University

Abstract
Testing and debugging networks in situ is notoriously difficult.
Many vital correctness properties involve histories over mul-
tiple packets (e.g., prior established connections). Checking
such properties requires cross-packet state, which cannot be
fully captured on stateless switch hardware.

Recent SDN work is enabling limited switch operations on
persistent state. We present runtime checking of cross-packet
correctness properties as a unique and instructive use case
for developing stateful switch primitives. In this paper, we
examine a set of cross-packet properties and distill from them
switch features needed to monitor their correctness. We then
contrast these against features provided by current approaches
to switch state in SDNs and identify semantic gaps with an
eye toward informing future switch instruction sets.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management

1. INTRODUCTION
Testing and debugging network behavior can be uniquely

challenging. Naive tests, such as pinging, may capture con-
nectivity, but not deeper aspects of the system. These may
include ARP resolution, timing of responses, and—most chal-
lenging of all—how network state evolves in response to
events. Software Defined Networking underscores this prob-
lem, as the network may now be controlled by third-party or
home-grown software, rather than the limited configuration
languages provided by switch manufacturers.

An alternative testing approach involves checking correct-
ness properties of the network. In this paper, we propose

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotNets-XV, November 09 - 10, 2016, Atlanta, GA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4661-0/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3005745.3005755

runtime monitoring for correctness of stateful network behav-
ior, which has received limited attention to date, rather than
the more well-studied problems of monitoring for per-flow
measurement (e.g., [21]) or to detect patterns in traffic.

In Sec. 2, we will present complex and realistic proper-
ties. For illustration, we begin with a simple one. Consider
a standard learning switch, which remembers arrival ports
for layer-2 source addresses to avoid broadcasting. One of
its many correctness properties is: “Once a destination D is
learned, packets to D are unicast on the appropriate port.” To
show this property is violated, a monitor must find an initial
packet from which address D should be learned, followed by
another packet, addressed to D, forwarded incorrectly:

D A
drop or floodB D

1

32

In canonical SDN platforms, a learning switch implemen-
tation is typically part of a program running on the controller.
Many tools are available to statically check properties in
network programs [1, 8, 11, 13, 17], but these fail to cap-
ture the “full stack” of network behavior since they reason
about a program or configuration in isolation. VeriFlow [10]
and similar approaches, such as the property-based work of
Beckett, et al. [5], examine the network at runtime, but are
limited to analyzing flow-table rules installed by a known,
white-box application, and thus are of limited use in a hybrid
environment, when integrating with black-box code, or—as
is becoming more common—when some stateful operations
happen on-switch rather than via the controller.

Checking correctness properties at runtime intrinsically
requires cross-packet state, i.e. retaining information about
packet history, due to the dependency between initial packets
(that trigger learning) and subsequent packets (that use the
learned destination). As multiple addresses will be seen over
time, a monitor must manage a growing set of learned desti-
nations. Thus, maintaining packet history differs greatly from
runtime methods that monitor packet trajectory, such as Path
Queries [15] and NetSight [9], which are unable to capture
the rich, stateful nature of many correctness properties.

Monitoring the necessary packets, rather than only con-
troller messages, quickly becomes expensive to do externally:

http://dx.doi.org/10.1145/3005745.3005755

in the learning switch example, any outgoing packet could po-
tentially violate the property (e.g., if after D has been learned,
packets sent to it are broadcast instead of unicast). Thus, an
external monitor must either see all such packets, or else
update the switch’s behavior dynamically to filter out idem-
potent updates, which in this case amounts to keeping the full
state table in its forwarding base.

For these reasons, we claim that the ideal location for mon-
itoring cross-packet properties is directly on switches, a feat
which is becoming possible due to emerging developments
to increase switch programmability. Proposals such as Open-
State [6], POF [20], and P4 [7] provide stateful operations on
switches, enabling applications such as MAC learning and
connection tracking without controller interaction. In light of
this trend, we make a case for runtime, on-switch monitoring
of cross-packet correctness properties, which has several ad-
vantages: • it obviates the need to redirect potentially large
volumes of traffic to an external monitor; • switches may
run stateful programs without controller interaction, mak-
ing controller-based monitoring infeasible; and • by analyz-
ing packets directly in the data plane, switches can monitor
properties on a broader scope than static analysis tools or
controller-based monitoring schemes support, even in the
presence of non-SDN devices or third-party middleboxes.

Related Work in Stateful Property Checking.
Runtime property checking of software has a strong pedi-

gree. MonPoly [4], MaC [12], Eagle [3], and many others
analyze or enable analyzing event streams to verify stateful
correctness properties. While one could build a middlebox
that runs, say, MonPoly, that approach would abandon the ben-
efits of switch-centric monitoring and it is unclear that these
approaches would scale to line rate. DMaC [23] leverages cus-
tom on-switch Datalog support for stateful monitoring; our
aim is necessarily closer to standard switches. Approaches
like OFRewind [22] capture only control packets, which lim-
its the scope of properties that can be checked.

Middlebox-centric monitoring approaches depend on rout-
ing traffic through computationally powerful nodes. These are
challenging and expensive to deploy for checking behavior
throughout the network core—as in the above learning switch
property—rather than at its edge.

In SIMON [18] a central server sees every network event,
allowing operators to write stateful monitoring scripts in a
fully-expressive programming language. In spite—indeed,
largely due to—this extensive power, SIMON runs only in a
simulator, where it can be used for prototyping.

Contributions.
As SDN switches rapidly become more programmable,

now is the time to consider vital use cases for switch fea-
tures that point to unique requirements but have not been
adequately explored. In this paper, we examine a set of cross-
packet properties and identify key features needed to monitor
their correctness. As we will show, even relatively simple

correctness properties can raise subtle semantic questions and
point to unique challenges not considered in current proposals
for extending switches.

This paper stems from our experience with Varanus [16], an
experiment in on-switch stateful property monitoring. Varanus
provides a query language for properties, adapted to run on
switches by using a restricted, limited-power set of SIMON’s
features. Though its language is promising, the Varanus sys-
tem is not yet practical. Through it we have identified chal-
lenges in monitoring stateful properties, and call out both
semantic requirements and scalability concerns. In doing so,
we hope to promote support for monitoring as a first-class
consideration in future switch instruction set designs.

2. SEMANTIC CHALLENGES
We begin by identifying key semantic features needed for

on-switch stateful property monitoring. Since properties vary
in the features they need, we examine several basic examples
in succession (Tab. 1 lists more complex properties). To sepa-
rate semantic requirements from on-switch implementation,
we defer discussing implementation to Sec. 3.2.

2.1 Example: Stateful Firewall
A stateful firewall opens to external traffic as internal hosts

initiate connections. One correctness property for such a de-
vice is: “After seeing traffic from internal host A to external
host B, packets from B to A are not dropped”. Monitoring for
violations of this property requires identifying event traces,
consisting of one packet arrival and one departure, for arbi-
trary values of A and B such that the B→A packet is dropped:

A B

drop
B A

1

3
2

This requires a number of semantic features from the switch.
Feature 1: Access to Necessary Fields. The monitor must
be able to obtain values for A and B. Extracting header fields
is a primary function of most switches, yet standard switches
only parse packet headers to a limited depth. Our stateful
firewall monitor reads no deeper than can be accessed in stan-
dard hardware. Checking application-layer fields, however,
requires richer parsing. The monitor must also be able to ob-
serve egress packets and distinguish them from new arrivals.
Feature 2: Access to Event History. Here, the switch must
remember the set of outgoing (A,B) address pairs seen. It must
then match against that stored state to detect violations.

We define a property as a sequence of observations that,
when completed, witness a violation. For instance, violating
this firewall property requires two observations: an A→B
packet and a B→A packet whose egress action is drop.
Feature 3: Timeouts. To rein in space consumption and
make the switch more resilient to network failure, stateful
firewalls often erase “stale” connections after a reasonable
timeout. The property as written so far does not soundly cap-
ture this new requirement: a drop that comes after a valid

Property Fi
el

ds

H
is

to
ry

Ti
m

eo
ut

s

O
bl

ig
at

io
n

Id
en

tit
y

N
eg

M
at

ch

T.
O

ut
.A

ct
s

In
st

.I
D

ARP Cache Proxy Requests for known addresses are not forwarded L3 • exact
Requests for unknown addresses are forwarded L3 • • • • exact

Port Knocking Intervening guesses invalidate sequence L4 • • exact
Recognize valid sequence L4 • • • exact

Load Balancing New flows go to hashed port L4 • • • symmetric
New flows go to round-robin port L4 • • • symmetric
No change in port until flow closed L4 • • • symmetric

FTP Data L4 port matches L4 port given in control stream L7 • • symmetric
DHCP Reply to lease request within T seconds L7 • • • symmetric

Leased addresses never re-used until expiration or release L7 • • symmetric
No lease overlap between DHCP servers L7 • • symmetric

DHCP + ARP Proxy Pre-load ARP cache with leased addresses L7 • • • wandering
No direct reply if neither pre-loaded nor prior reply seen L7 • • wandering

Table 1: Select additional properties not discussed in Sec. 2. Port knocking and the first ARP example are taken from Varanus [16]; FTP example is from
FAST [14]; others are from our own experience. The Fields column gives the maximum layer of parsing required as a rough indicator of complexity. The Inst.
ID field indicates the variety of instance matching required (Feature 8). Other columns contain • if the feature is required, and are blank otherwise. Side-effect
control and provenance are intrinsic features of the monitoring implementation and independent of the property.

timeout will still trigger a violation. Instead, we must express:
“for T seconds after seeing traffic from A to B...”:

A B

drop
T

B A
1

3
20

The monitor must maintain separate timers for each A,B
pair, to be reset whenever a new A→B packet is seen.
Feature 4: Persistent Obligation. An intelligent stateful fire-
wall also deletes state when it detects a connection has been
closed. As before, A→B packets allow return traffic, but as
soon as either party closes the connection, B→A packets
should be dropped until A re-establishes the connection. The
property is now: “for T seconds after seeing traffic from A to B,
or until the connection is closed...”. The second observation
cannot always occur if a B→A is dropped within the timeout;
the monitor is obligated to watch for the connection to close:

A B

drop
T

A B
where flags =
 FIN

No:

B A

1

3
2

0

{ 2until

This sort of temporary obligation is analogous to the well-
studied “until” formulas in temporal logics, and can be chal-
lenging to implement—especially in the presence of timeouts.
Furthermore, prior observations may partition the obligation
space: a separate obligation is necessary for each A,B pair:
one pair may close its connection, but not another.

2.2 Example: Network Address Translation
NAT alters packets as they cross the switch, which requires

additional semantic features to monitor. Suppose we expect
that reverse translation is working, i.e., “Return packets are

translated according to their corresponding initial outgoing
translation.” A violation of this property consists of four
observations: (1) a packet arrival A,P→B,Q1 from the inter-
nal network; (2) the same packet departing with new source
A’,P’ (where A’ and P’ are a fresh address and port com-
bination assigned by the switch); (3) a packet arrival B,Q→A
’,P’ from the external network; and (4) the same packet
departing with destination not equal to A,P.

A,P B,Q

4

2
0

A',P' B,Q

B,Q A',P' 3B,Q A'',P''

where A'' != A or P'' != P

1

Feature 5: Maintaining Packet Identity. Feature 1 allows
extraction of packet headers: we can observe an arrival and
then, some time later, an egress event that shares some of
the arrival’s fields. This is insufficient to capture “the same
packet” in steps (2) and (4) above. Here the monitor needs to
connect an arrival and its corresponding set of egress events—
information that is most reliably captured on the switch itself.

Dropped-packet detection is a related issue. All the firewall
examples above take action when a B→A packet is dropped.
As Sec. 3.2 explains, this valuable feature is almost univer-
sally unsupported, even by recent versions of OpenFlow.
Feature 6: Negative Match. Step (4) detects departures with
destinations not equal to some previous value. State must
therefore be available in a way that can be negatively matched.

2.3 Example: ARP Cache Proxy
An ARP proxy should, either via the controller or through

local state, learn address mappings and reply immediately
upon seeing a request for a known hardware address. This
reply is a different packet from the request, so packet identity
1A and B are source and destination layer-3 addresses and P and Q
respective layer-4 ports.

(Feature 5) cannot be used here. While the property is cer-
tainly violated if the switch never sends a reply, we impose a
maximum wait time to make checking practical: “If the switch
receives a request for a known MAC address, it will send a
reply within T seconds.” Violating this property involves T
seconds passing without a reply being sent:

Req for B from A

Rep to A for BNo:
T

0

{
2

1

Feature 7: Timeout Actions. Such negative observations
(orthogonal to negative matching) trigger when a timeout
fires, rather than just expiring state. This differs substantially
from the usual meaning of timeout on a switch, and is another
feature almost universally unsupported by current switches.

Refreshing timeouts corresponding to negative observations
is also subtle. If—like ordinary timeouts (Feature 3)—they
were reset whenever the preceding observation fired, a never-
answered sequence of requests every (T-1) seconds would not
be detected as a violation.

2.4 Additional Semantic Challenges
Finally, some challenges arise regardless of property.

Feature 8: Instance Identification. Monitor state at any
given time comprises a set of partially completed attempts to
show property violation, which we call instances. An instance
consists of a set of header values matching previously seen
observations, plus the next observation stage to be matched.
For example, a monitor instance for the NAT property on
the cusp of raising an alert would contain concrete values
for the original source and destination A,P→B,Q, the trans-
lated source A’,P’, and the fact it is now attempting stage
(4). When an event occurs, the monitor must decide which
instance(s), if any, it advances. This task is more or less chal-
lenging depending on data flow between observation stages.
• Symmetric Match. In the stateful-firewall properties above,

data flow is straightforward. The first observation binds ad-
dress values A and B which match (when inverted) return
packets. A,B pairs thus fully describe instances at any stage.
• Wandering Match. The “DHCP + ARP” properties in

Tab. 1 extend the ARP proxy example by populating the
cache by observing addresses in DHCP traffic. Checking
these properties requires mapping observations with different
protocol fields to the same instance, rather than matching on
a fixed set of fields for each stage (e.g., a 5-tuple match).
• Multiple Match. Switches can react to information that

is out-of-band with respect to the data plane. For example, a
learning switch (Sec. 1) may react to a downed link: “link-
down messages delete the set of learned destinations.” If
this property fails, it is because a packet from address D
arrived, followed by a link-down message, and then a packet
with destination D was unicast without intervening D-sourced
packets. To handle this, the link-down message must advance

one partially-complete instance for each D seen so far.
Feature 9: Side-Effect Control. Even in a highly optimized
ideal switch, contention for shared state will impact through-
put. If a packet must cause a state change, a switch has two op-
tions: forward the packet inline with state update—blocking
forwarding until the update is complete—or asynchronously
split the forwarding and update actions.

If the switch splits processing, the monitor has minimal
impact on throughput, but its state might lag behind any pack-
ets issued in response, leading to monitor errors. In contrast,
if the switch inlines updates, its state will be up to date, but
at the expense of increased forwarding latency, which could
also cause incorrect monitor behavior. Some properties and
networks may be more forgiving of delay than others. We
therefore believe that this option should be explicitly exposed,
which none the approaches we study in Sec. 3 do.
Feature 10: Provenance. Once a property violation is de-
tected, the monitor is able to send a failure notification. So
far that message conveys only the final, trigger event. Ignor-
ing the events leading up to the violation is suboptimal for
debugging, but recording each packet that advances an obser-
vation is not feasible. Thus, the implementation must provide
a balance between full provenance and performance.

3. IMPLEMENTATION STRATEGIES
There is an ongoing trend toward more programmable

switches, which often leads to adding stateful primitives.
However, building a monitor that provides the semantic fea-
tures discussed in Sec. 2 involves many aspects of a switch’s
design, of which state is only one component. In Sec. 3.1,
we review recent approaches providing state on switches;
Sec. 3.2 discusses the different ways in which they fall short
of certain requirements for stateful property monitoring.

3.1 Existing approaches to on-switch state
Standard OpenFlow provides basic quantitative state, such

as counters and meters, to track flow statistics. Any additional
state requires OpenFlow extensions or controller involvement.

Different proposals have added limited on-switch state to of-
fload controller interaction. OpenState [6] proposes a design,
based on Mealy machines, for OpenFlow tables that maintain
per-flow state. When packets arrive, each is mapped to a state
based on pre-determined header fields, after which the state
may be modified. This simple state-machine primitive allows
functionality like MAC learning, tracking established con-
nections, and port knocking on-switch. FAST [14] encodes
similar state machines and provides a software implementa-
tion using the Open vSwitch [19] learn action, which allows
a switch to modify its flow tables as packets are seen. FAST
combines extrinsic state information and per-flow state by
incorporating hash functions, enabling applications such as
load balancers and heavy-hitter detection.

POF [20] and P4 [7] describe more generic packet process-
ing architectures. Programs written in P4 define a processing
pipeline for match-action switch hardware. POF has similar

objectives, but its implementation is geared toward network
processors. Both architectures provide generic, per-flow per-
sistent state that can be updated during packet processing. In
addition, they support rich, protocol-independent matching,
providing access to a wide range of protocol fields. P4 also
describes an “egress pipeline”, allowing further processing
on switch metadata before packets are forwarded.

These proposals clearly support stateful operations. Indeed,
they provide all of the features for monitoring sequences of
positive observations that use exact or symmetric instance
identification. POF and P4 also give additional support for
matching and identifying related events. Despite this added
functionality, they do not account for multiple match, timeout
actions, or preserving history for provenance.

Looking beyond these generic architectures, SNAP [2] pro-
vides a high-level abstraction for stateful operations. SNAP
programs operate on a set of persistent global arrays, and en-
able stateful tests along with advanced matching capabilities.
While this provides a powerful language for writing programs,
SNAP shares the limitations of P4 and POF (indeed, these
are some of its potential target platforms) in terms of support
for stateful monitoring. Moreover, SNAP uses the “one big
switch” abstraction, relying on its compiler to determine for-
warding paths in the network core. This hides details about
the behavior of individual switches, which may be of interest
to a monitor—highlighting the essential difference in design
goals between monitoring and network-control programs.

Varanus [16] is unique among these approaches: it was
designed with property monitoring as an explicit goal and
so provides a different set of stateful extensions. Varanus’s
approach encodes each active monitor instance as its own
OpenFlow table and uses an extended, recursive form of the
Open vSwitch learn action to “unroll” instances into new
tables as events arrive. This permits multiple instances to
be matched at once, as well as allowing timeouts to advance
state. Varanus provides these additional monitoring primitives,
but at the expense of performance. Sec. 3.2 discusses these
primitives in detail as well as their performance tradeoffs.

3.2 Identifying semantic gaps for monitoring
The above approaches add many features to enhance pro-

grammability in SDNs. However, they tend to focus on imple-
menting programs that determine packet-processing behavior
and thus do not consider the challenges raised when moni-
toring the correctness of that behavior. Tab. 2 observes some
common semantic gaps in what these approaches support.

Timeout Actions. Simple rule timeouts have been pro-
vided since OpenFlow 1.0, as they are directly applicable to
network-control applications. In contrast, Feature 7 describes
extending timeouts to perform explicit actions that update
state for an instance. Using a timeout in this manner has
limited usage in forwarding programs, but in monitoring it
enables powerful negative observations. Adding such support
would entail a new type of event not triggered by a packet,
as well as processing the additional state updates. To our

knowledge, Varanus uniquely supports timeout actions, using
custom extensions to Open vSwitch.

Parsing and match support. Access to a wide range of
fields (Feature 1) is important, and not only for monitoring.
Programmable parsing is becoming more prevalent in pro-
posed SDN architectures like P4. A more critical gap for
monitoring is the ability to parse and match on a switch’s
metadata information, such as its output port, as it traverses
the processing pipeline. This is useful for checking proper-
ties based on the switch’s behavior, like determining if the
output port is correct and discerning multicast from unicast.
This could be implemented by adding pipeline stages (i.e.
tables) for monitoring after making output decisions. Match-
ing on output port is supported in OpenFlow 1.5’s egress
tables, but dropped packets never enter the egress pipeline,
which increases the difficulty of extracting this information.
P4 is unique in considering this requirement, revealing an
important design gap in most current proposals.

State updates. Monitoring applications may use persistent
state quite differently from network-control applications. In
a stateful firewall application that tracks connections, state
updates may not be necessary after a connection is established.
However, when monitoring the firewall, state updates may
be required more frequently—potentially on every packet.
Thus, monitoring poses new design challenges in how state
updates occur. This is true regardless of whether the switch is
implemented in hardware, software, or as a hybrid network
processor. We discuss some of our experiences with state
updates when discussing performance challenges in Sec. 3.3.

Provenance. Network-control programs have little need to
preserve packet history information beyond existing require-
ments for persistent state (like tracking open connections). In
contrast, an operator may wish to know what led up to a prop-
erty violation. Supporting this is clearly challenging due to
the extra state required, although rich approaches like POF/P4
could theoretically provide it. Moreover, limited provenance
could be recovered without added cost: since some header
information is retained for matching purposes, those values
(where used in the final observation) could be conveyed along
with the final event. A more complete provenance could be se-
lectively constructed via an approach like NetSight [9], which
sends postcards to a central monitoring server.

Instance identification. All of the approaches discussed
provide some form of “per-flow” persistent state. Broadly, a
“flow” defines a set of related packets that should map to the
same state, such as all traffic in a TCP connection or local to
a switch port. Methods for mapping a packet to a particular
flow state differ by implementation, including: using specific
fields to index into a state table (OpenState), arbitrary hash
functions (FAST), or user-defined methods in programmable
architectures (P4, POF, and SNAP).

Monitoring can require subtly different criteria for map-
ping packets to states, since a monitor tracks instances of
partially completed observations (Feature 8). This differs
from typical definitions of a “flow”: instances are defined by

Semantic Challenge OpenFlow
1.3 OpenState [6] FAST [14] POF [20]

and P4 [7] SNAP [2] Varanus [16] Static
Varanus

State mechanism Controller
only

State
machine

Learn
action Flow registers Global arrays Recursive

learn
Recursive

learn
Update datapath — Fast path Slow path Fast path Fast path Slow path Slow path
Processing Mode Inline Inline Inline Split Split
Event History 3 3 3 3 3 3
Identification of related events 3 (1.5 only) 3 3 3 3
Field access Fixed Fixed Fixed Dynamic Dynamic Fixed Fixed
Negative match 3 3 3 3 3 3 3
Rule timeouts 3 3 7 3 7 3 3
Timeout actions 7 7 7 7 7 3 3
Symmetric match 3 3 3 3 3 3
Wandering match 7 7 3 3
Out-of-band events 7 7 7 7 3 7
Full provenance 7 7 7 7 7 7

Table 2: Comparison of existing approaches. A 3 indicates that a work provides a given semantic feature. An 7 means that the approach’s architecture precludes
implementation of a feature, or indicates that it is not included in its design. Where a feature does not apply or where support is unclear, we leave a blank space.
We limit our analysis of OpenFlow to actions supported in version 1.3 (1.5 for egress matching) without controller interaction. Since the state processing mode
and hash function support for wandering match in POF, P4, and SNAP is target dependent, we leave these spaces blank.

an observation’s timestamp and previous history, in addition
to packet header information. Supporting wandering match
stretches the definition of a flow to span multiple protocols,
which complicates parsing packets for a single state machine.
Multiple match semantics requires advancing more than one
instance per packet event to support out-of-band events. To
our knowledge, this challenge is unique to monitoring and is
prohibitively costly in current methods since it differs greatly
from well-studied match-action semantics.

Varanus enables multiple match by separating monitor in-
stances into different OpenFlow tables. This uniquely sup-
ports out-of-band events, but at a high cost. Since Varanus
isolates each instance in its own table, the depth of the switch
pipeline (i.e. the number of tables to check) is no smaller than
the number of active instances, which is infeasible in practice.

3.3 Key Performance Challenges
Developing switch primitives for monitoring that func-

tion at line rate is a challenging task due to the increased
requirements for matching and persistent state that go beyond
even relatively new proposals for stateful forwarding. In this
section, we discuss our experiences in building the Varanus
prototype as an example of the inherent tradeoffs between
monitoring features and performance in switch design.

As Tab. 2 shows, Varanus offers a great deal of expressive
power for monitoring compared to other on-switch works.
However, Varanus does not scale for two reasons: the number
of active instances determines the pipeline depth, which can
greatly affect packet processing time; and its OpenFlow exten-
sions for maintaining state cannot achieve a high throughput.
The former issue can be mitigated by bounding the number
of monitoring tables in the switch pipeline, which provides,
in principle, a constant packet processing time, at the expense
of some expressivity. Limiting the processing pipeline to one
table per observation stage preserves support for wandering
match while sacrificing support for out-of-band events, which
required an unbounded amount of tables. We view removing
multiple-match support as a reasonable tradeoff since our

experiences (and Tab. 1) indicate that properties involving
out-of-band events are relatively rare.

However, even this “static” Varanus remains an intractable
approach so long as it stores and updates its state using Open-
Flow rules, which cannot be modified at line rate. A scalable
implementation would need to involve more rapid state mech-
anisms, such as the register-based approach in P4. Monitoring
on-switch unavoidably incurs a latency cost, however small,
since it lengthens the switch’s pipeline. Where the switch’s
regular stateful operations overlap with the monitor’s, some
redundancy in computation and storage is to be expected, and
limiting overhead via appropriate tradeoffs will be vital.

4. CONCLUSION
New architectures are driving the future of SDN by in-

creasing switch programmability. In light of this inexorable
trend, it is vital to identify unconsidered use-cases for switch
programmability, such as stateful property monitoring. We
show that the requirements of stateful monitoring go beyond
the typical concept of “per-flow” state: they interact deeply
with other switch design concerns such as parsing, pipelining,
and event capture. This reveals significant gaps between the
requirements of monitoring and the state-of-the-art.

For simplicity, our scope has been limited to properties that
can be monitored using a single switch and expressed with
boolean conditions, rather than quantitative measurements.
Even with these limits, we have identified ways that existing
approaches fall short of the features that property monitoring
requires. We hope that our experiences motivate switch de-
signers to consider stateful monitoring as a use-case in their
future work.

Acknowledgments.
We are grateful to Theophilus Benson and the anonymous

reviewers for their insightful feedback. This work was par-
tially supported by the NSF.

5. REFERENCES
[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic foundations for
networks. In Principles of Programming Languages (POPL), 2014.

[2] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
SNAP: Stateful network-wide abstractions for packet processing. In
Conference on Communications Architectures, Protocols and
Applications (SIGCOMM), 2016.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program
monitoring with LTL in EAGLE. In International Parallel and
Distributed Processing Symposium, 2004.

[4] D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu. Monitoring metric
first-order temporal properties. Journal of the ACM, May 2015.

[5] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker.
An assertion language for debugging SDN applications. In Workshop
on Hot Topics in Software Defined Networking, 2014.

[6] G. Bianchi, M. Bonola, A. Capone, and C. Cascone. OpenState:
Programming platform-independent stateful OpenFlow applications
inside the switch. ACM Computer Communication Review, 2014.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. ACM Computer
Communication Review, 2014.

[8] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network
configuration analysis. In Networked Systems Design and
Implementation, 2015.

[9] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown.
I know what your packet did last hop: Using packet histories to
troubleshoot networks. In Networked Systems Design and
Implementation, 2014.

[10] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey.
VeriFlow: Verifying network-wide invariants in real time. In
Networked Systems Design and Implementation, 2013.

[11] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. J. Clark.
Kinetic: Verifiable dynamic network control. In Networked Systems
Design and Implementation, 2015.

[12] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and
O. Sokolsky. Formally specified monitoring of temporal properties. In
Euromicro Conference on Real-Time Systems, 1999.

[13] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with Anteater. In Conference on
Communications Architectures, Protocols and Applications
(SIGCOMM), 2011.

[14] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan.
Flow-level state transition as a new switch primitive for SDN. In
Workshop on Hot Topics in Software Defined Networking, 2014.

[15] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker. Compiling path
queries. In Networked Systems Design and Implementation, 2016.

[16] T. Nelson, N. DeMarinis, T. A. Hoff, R. Fonseca, and S. Krishnamurthi.
Compiling Stateful Network Properties for Runtime Verification.
ArXiv e-prints, July 2016. http://arxiv.org/abs/1607.03385.

[17] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi.
Tierless programming and reasoning for software-defined networks. In
Networked Systems Design and Implementation, 2014.

[18] T. Nelson, D. Yu, Y. Li, R. Fonseca, and S. Krishnamurthi. Simon:
Scriptable interactive monitoring for SDNs. In Symposium on SDN
Research (SOSR), 2015.

[19] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The design and implementation of Open vSwitch. In Networked
Systems Design and Implementation, 2015.

[20] H. Song. Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane. In Workshop on Hot Topics in
Software Defined Networking, 2013.

[21] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. OpenNetMon:
Network monitoring in OpenFlow software-defined networks. In
Network Operations and Management Symposium, 2014.

[22] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind:
Enabling record and replay troubleshooting for networks. In USENIX
Annual Technical Conference, 2011.

[23] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. DMaC: Distributed
monitoring and checking. In Runtime Verification, 2009.

http://arxiv.org/abs/1607.03385

	Introduction
	Semantic Challenges
	Example: Stateful Firewall
	Example: Network Address Translation
	Example: ARP Cache Proxy
	Additional Semantic Challenges

	Implementation Strategies
	Existing approaches to on-switch state
	Identifying semantic gaps for monitoring
	Key Performance Challenges

	Conclusion
	References

