
ECE2049 – Embedded Computing in Engineering Design

Lab 2: Music Player++

Lab Assignment

The ultimate goal of this lab is to develop a system to play a tune using the buzzer and flash 4 LEDs with the
notes. This lab has several objectives, including gaining further experience with digital I/O and understanding
the operations of the MSP430’s timing, and developing experience writing software which depends critically on
the passage of time.

To provide practice with connecting external hardware, we will be adding our own buttons and LEDs. In
addition, this lab has been restructured in a series of stages: you will build your game incrementally in different
phases—connecting the hardware, using the timer, and finally building the game. The final stage of this lab is
extra credit: you can extend your music playing setup to create a game (similar to Guitar Hero) where a player
follows along by pressing in buttons in time with the song—to win, needs to keep you with your program!

Stage 0: Pre-lab

Similar to lab 1, you should start this lab with the pre-lab assignment described below. To start, do the
following:

1. Watch the intro video for this lab. The video has a dedicated section for this prelab!

2. Read the entire lab assignment

3. Each note in the song you play is defined by two components: the pitch of the note, and the duration the
note should be played. In order to play a song, you will need to find a way to store both properties for
each note. You will also need to find a way to map notes to LEDs such that the same note always lights
the same LED. (With only 4 LEDs and buttons, the same LED will need to correspond to more than one
note—this is the case in Guitar Hero, too.)

With this in mind, think about the following: what data structure(s) will you use to store pitch, duration,
and the corresponding LED for each note? Write down your ideas. One starting point is to use a
struct type to store information about each note—if you want to do this, see the section Initializing

Structs for more details.

4. Read Stage 2 and do step 1 (section Selecting I/O pins): select 8 available I/O pins (4 for the buttons, 4
for the LEDs) that you will use for connecting the buttons and LEDs. Write down your choices, and
explain how you plan to connect/configure the pins (Input or output? Are pull up/down resistors
required?). For the pre-lab phase, you do not need to write any code or draw any circuit diagrams—just
write down what you are thinking. For more info on this, see the intro video starting at 11:50.

Write down your ideas for these questions and submit them to the pre-lab assignment on Canvas. We will
review your work and provide feedback within 24 hours. You are also welcome to ask us about your work
during office hours/lab sessions, and we can review your work in real-time.

ECE2049: Lab 2

ECE2049-E21 Page 2 of 16

Overview

This lab has several components. To simplify this process, this lab is organized into a series of stages where
you will implement and test each component. When you finish one stage, you should submit your work on
Canvas and check in with the course staff. The stages are outlined as follows:

• Stage 1a: Connect a small buzzer and configure it to play different frequencies

• Stage 1b: Connect 4 buttons and 4 LEDs to your board and write helper functions for each

• Stage 2: Configure TimerA2 to generate periodic interrupts and play some notes using the timer to
control the duration

• BONUS: Stage 3: Extend your work from Stage 2 to implement MSP430 Hero: track the user’s input
on the buttons, compute their score, and implement all the final polish to make it a game

You can receive full credit on the lab by completing Stages 1a, 1b, and Stage 2. The final stage, which
involves building the whole game, can be completed for bonus points. See the Grading Rubric for details.
See the Lab 1 Demo Video for a demonstration of what you should be implementing for each stage.

You should start by working on Stage 1a or 1b. Doing so will require working with some extra hardware
components (buttons, LEDs, a buzzer, wires, breadboard, etc.), as listed on the labs page of the course
website. If you do not yet have your extra parts, you can start with Stage 2—read this section for details.

Also, if you are new to electrical prototyping (ie, using a breadboard), that’s okay! Be sure to watch
the intro video for a tutorial.

Stage 1: Buzzer

In this part, we will connect a passive, magnetic (or piezoelectric) buzzer to our launchpad. The buzzer is a
simple type of speaker that can play a single tone. We will connect the buzzer to a PWM output pin (controlled
by Timer B0) that will play different tones on the buzzer.

Part 1a
Buzzer

Part 1b
Buttons &

LEDs

Part 2
Play notes

Part 3
Gameplay
(BONUS)

ECE2049: Lab 2

ECE2049-E21 Page 3 of 16

1. Using your breadboard and wires, connect the buzzer to the pin labeled P3.5 on the MSP430 launchpad,
as shown in Figure 1. You can find this pin in the bottom-right corner of the header on the left side of
the board. Some buzzers are polar components (ie, they have positive and negative pins)—if this applies
to your buzzer, at least one pin should be marked as such on the top or bottom of the component. The
positive pin should be connected to the Launchpad, while the negative pin should be connected to
ground.

Note: Remember that all circuits need a common ground: make sure your breadboard’s ground
is connected to a ground pin on the MSP430 launchpad.

Figure 1: Buzzer wiring diagram

2. Once you have connected your buzzer, you are ready to test it. If you have not done so already,
download and import the lab 2 template project from the course website. The template contains two
functions, BuzzerOn and BuzzerOff, for controlling the buzzer—they are located in peripherals.c. To

test your buzzer, try something like the following:

while(1)

{

 BuzzerOn();

 swDelay(1);

 BuzzerOff();

 swDelay(1);

}

If this worked, congratulations! Your buzzer works, and you should be thoroughly annoyed (mwhaha).
How do you make it stop? Pause the debugger, or load a new program. If you do not hear any sound
from your buzzer, check your connections and ask the course staff for assistance.

3. Playing notes: In order to play different notes using the buzzer, you will need to modify the BuzzerOn

function, or create a new one, that takes in an argument to control the pitch. Examine the BuzzerOn

function in peripherals.c, including the comments. This function uses TimerB0 to generate a PWM
waveform that drives the buzzer. The period of the PWM waveform is controlled by the Timer B CCR0
register—changing the period will change the pitch of the sound. TimerB0 uses ACLK as a clock
source, so the period is specified in a number of ACLK ticks.

Remember that frequency of a sound is 1/𝑝𝑒𝑟𝑖𝑜𝑑 and that the period--at the end of this document is a

table of frequencies of an octave of musical notes in Hz. You will need to do some math to convert
these notes to a number of ACLK ticks.

ECE2049: Lab 2

ECE2049-E21 Page 4 of 16

Note: BuzzerOn is defined in peripherals.c. The prototype for BuzzerOn is defined in peripherals.h. If

you modify BuzzerOn, you will also need to modify its prototype. Similarly, if you create a new

function in peripherals.c, you should add its prototype to peripherals.h.

4. Test Program: In your main() you should play a few notes to verify your buzzer works when your
program starts, similar to the example in the video.
If you have already completed stage 1b, don’t remove your test code from this stage so that you can
still test your buttons. In addition, light up one LED for each note that you play.

5. Once you can demonstrate that your buzzer can play different notes, you have completed this stage!

Stage 2a: Buttons and LEDs

In this part, we will connect 4 buttons and 4 LEDs to the Launchpad that will serve as our main input and
outputs for the game.

Note: The instructions here are designed to supplement the intro video, which demonstrates this part in detail.
Make sure you watch the intro video!

Selecting I/O pins

A key part of adding external peripherals to any microcontroller is determine how they should be connected. In
this part, we will be connecting 4 buttons and 4 LEDs. These are all digital I/O devices, so we need to use a
total of 8 digital I/O pins. The MSP430 launchpad has two headers that provide access to a number of pins in
our MSP430. The Launchpad User’s guide describes the functions available on each header, reproduced here in
Figure 2. For more information on this part, see the section of the intro video starting at 33:45.

We need to find suitable pins to use for the buttons and LEDs. We have two requirements:

• The pin must be usable as digital I/O (ie, it has a Px.y designation)

• The pin must not already be in use for something else. We are using two other peripherals:
o The buzzer (Stage 1a) uses P3.5
o The LCD display module uses a number of pins, which are on the outer edges of the headers

1. Examine the header pin diagrams in Figure 2—the available pins are highlighted in blue boxes. From

these, select 4 available pins to use for the buttons, and 4 pins for the LEDs. There are many possible
choices, you can choose based on your preference. For example, you may wish to allocate contiguous
pins (eg. P9.0-3) to the buttons or LEDs, depending on how you write the code.

ECE2049: Lab 2

ECE2049-E21 Page 5 of 16

Figure 2: Launchpad Pin Reference

Available

Available

ECE2049: Lab 2

ECE2049-E21 Page 6 of 16

Connecting the LEDs

2. Using your breadboard and wires, connect 4 LEDs to the pins you selected, as shown in Figure 3.
Remember that LEDs must be connected with the correct polarity—see Figure 4 (or here) for a reference.
For each LED, you will need to add a current-limiting resistor: the best value will depend on the type of
LED, but, as a general recommendation, a resistor between 500-1kΩ is usually sufficient. The lower the
value, the brighter the LED, but using a resistor that is too small (or none at all) may burn out the LED.

Before you connect your LED to the microcontroller, first test the circuit by connecting the wire that
would go to the microcontroller (ie, the part that would connect to Px.y in Figure 3) to 3.3V—you
should see the LED turn on. If it does not, check your circuit and the LED polarity, and make sure you
are not using a resistor that is too large. If all else fails, try a different LED.

Figure 3: Example LED wiring diagram

Figure 4: LED polarity diagram

3. Write a function setExternalLeds() to take in a variable x and set the state of the LEDs, interpreting

x as a bit vector. The implementation for this is very similar to the function setLaunchpadLeds, as well

as the examples developed in Lecture 5 (such as the decoder example). You will need to tailor these
examples to use the pins you selected for the LEDs.

4. Before continuing, test your setExternalLeds() function by adding some code to light up each LED

(you will change this once you add the buttons).

Connecting the buttons

1. Using your breadboard and wires, connect 4 buttons to the pins you selected. See the video for
guidelines on working with the physical buttons.
As we discussed in class, there are many ways to connect buttons. Figure 5 shows an example with the

https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity
https://vty.sh/ece2049/content/decoder_example.pdf

ECE2049: Lab 2

ECE2049-E21 Page 7 of 16

simplest external wiring, which is also how the buttons on the Launchpad is connected. We recommend
you follow this example, but you can do something else if you wish.

Figure 5: Example button wiring diagram

If you follow this example, you will need to configure the buttons using internal pull-up resistors.
(Why? Explain in your report.) If you use this configuration, you will configure the buttons very
similarly to the configuration for the Launchpad Launchpad buttons—you can find examples in
peripherals.c (initLaunchpadButtons()) and in Lecture 5 (notes and the decoder example). You will

need to tailor these examples to the pins you selected for the buttons. You are also welcome to use a
different configuration for the buttons (eg. using external pull-up resistors, etc.).

2. Write a function to read the state of the buttons and return the state of all 4 buttons as a bit vector. The
process for this is very similar to the code for readLaunchpadButtons, and for all the input examples

developed in class (Lecture 5, the decoder example), and for HW4. You will need to tailor these
examples to use the pins you selected for the buttons.

3. Test program: To test your buttons and LEDs, configure your main() to read in the state of the buttons
and set the LEDs such that one LED controls one button, similar to the example in the video. (Do not
remove any code you have already added for Stage 1a—the idea is to build up tests for each hardware
component.) For example, your main loop could look something like this:

// . . .

while(1) {

 // . . .

 char button_state = readExternalButtons();

 setExternalLeds(button_state);

 // . . .

}

If you find that your buttons or LEDs do not function as expected, check your wiring and use your
debugger to help identify the issue—try to identify if a) you are reading the inputs correctly, and b) you
are setting the correct output pins. For example, if LED 2 is not turning on: is bit 2 of button_state

changing when you press the button? Are you changing the appropriate output pin to turn on the LED?

If you have issues here, please do not hesitate to ask for help.

4. Once you can demonstrate your test program, you have completed this stage!

Stage 2: Play some notes

https://vty.sh/ece2049/content/decoder_example.pdf
https://vty.sh/ece2049/content/decoder_example.pdf

ECE2049: Lab 2

ECE2049-E21 Page 8 of 16

For this stage, we will play a simple melody using the buzzer, with the timing for each note controlled by our
timer. If you do not yet have your extra parts, you can implement this stage (for now) by displaying the
notes on the screen instead of using the buzzer—this will allow you to start working with your data structures
and the timer.

1. Defining your song: Based on your ideas from the prelab, and any feedback you received, create the
representation for your song by creating any data structures and defining a few notes. Your song should
be at least 16 notes long, and should be composed of notes of at least four different frequencies and two
different durations. See the section Defining Notes in C for details on defining notes.

Your song must be stored as some type of array (or multiple arrays) that define the notes—you may not
"hardcode" the song as a series of calls to BuzzerOn. What do you store in the array? This is up to you.
As a starting point, we recommend using a struct to represent each note—and thus your song would be

an array of structs.
For details on working with structs, see the section

ECE2049: Lab 2

ECE2049-E21 Page 9 of 16

Initializing Structs for important details.

With each note, one of the four multi-colored LEDs should flash on for the duration of the note. The
same note should always flash the same LED, but with only 4 LEDs, multiple notes may be mapped to a
single LED.
How do decide which LED to turn on for each note? There are multiple ways to handle this—for
example, you can either define or compute a mapping based on the note's frequency, or pre-define an
LED as part of your song data structure.

2. We will use the timer to control how long each note is played. Configure TimerA2 to generate periodic

interrupts at a rate of at least 0.005 seconds. (This resolution must be several times smaller than the
duration of a single note, why?) Your timer ISR should increment a global counter, which you will use
when playing the notes.

3. Before continuing, use the debugger to make sure your interrupts are working by setting a breakpoint in
the ISR function. If your program reaches the breakpoint, your interrupts are firing!

4. Test Program: Your test program for this phase should consist of a state machine with two “states,”

described below. (You are not required to use a switch-based state machine for this, so long as your

program behaves the same way.)

a. Hardware Test: At startup, your program should perform the “hardware test” from phases 1a
and 1b: play a few notes using the buzzer, and light up an LED for each note. Then, when a
user presses one of the four external buttons, light up the corresponding LED and play a note on
the buzzer (Thus, by pressing buttons, you should be able to play 4 different notes, one for each
button). When the user presses one of the launchpad buttons, go to the next state.

b. Play notes: Loop through each note in your song and play it for the amount of time specified in
your data structure, lighting up an LED for each note. You must use the timer to keep track of
the duration of each note—no software delays! When the song is done, go back to the starting
state.

(continued on the next page)

c. BONUS (+10): Play notes—now with user input! Since we have 4 buttons and 4 LEDs, we
can map each LED with a corresponding button and have the user play along.
To implement this part, modify your "play notes" state to do the following: While the note is
playing in the "play notes" state, read from the external buttons. If the user presses the button
that corresponds to the LED that is on, light up the green LED on the launchpad to show it was
correct. When the song is done, go back to the starting state.

We recommend that you start the timer at the beginning of the program, and then compare the duration
of each note to the elapsed time using the global count of interrupts (this is generally much easier than
starting and stopping the timer).

If you have questions about how to use the timer count to play the song, or other implementation details,
please do not hesitate to ask for help. We are happy to work with you on understanding this.

At this point, you should either 1) demonstrate your work to the course staff for an in-person signoff, or 2)
upload a short video demonstrating your lab’s functionality to the Stage 2 assignment on Canvas.

ECE2049: Lab 2

ECE2049-E21 Page 10 of 16

If you want to go on to stage 3 (bonus), read the next section. Otherwise, read the instructions in When you are
done: Signoff and Report.

Stage 3: MSP430Hero! (BONUS)

This section is a bonus. You can stop here and receive full credit, or continue to implement the full game
and receive many bonus points. See the Grading Rubric for details.

At this point, you have implemented all the major components for the game. Now, you will integrate
everything to actually play the game. The major component at this stage is reading the buttons to determine the
user’s input while playing the song, as well as writing the actual logic for the game. This phase does not have
defined steps—instead, we have outlined the major requirements for your game. How you complete them is up
to you.

Before starting, think back to your work on the last lab. Is there anything you could have done differently from
the beginning to make your life easier? Perhaps you used too many global variables, or you found your control
flow was too complicated? Maybe you realized that naming every variable “steve” was a bad idea (it is). As

you approach this lab, remember what you learned about software design to help you with this one!
If you have conceptual questions on how to approach specific C programming or software design concepts,
please feel free to ask us—we are happy to help!

System Requirements

1. Startup/Hardware test: At startup, the LCD should display a welcome message. In this stage, you
should incorporate your hardware tests from stage 1: play a couple of tones on the buzzer, and control
the LEDs using the 4 external buttons. This state serves as a test so you can check if your hardware is
working before starting the game. When the user presses S1 on the launchpad, the game should begin.

2. Countdown: After S1 is pressed, the game should give a 3 second countdown before playing its song.
The LCD should display the time 3, then 2, then 1, then GO. While this is happening, use the LEDs to
indicate some kind of countdown (count from 1-3 LEDs, etc.).

3. Playing Notes (and User Feedback): To give the user feedback on whether they are pressing the notes
in time, you should not play any sounds until the user presses a button. In other words, don’t just
start playing the note immediately, like you did in stage 2. If the user presses a correct button, play
the corresponding note. If the user presses an incorrect note, you should call them out on this by playing
an obnoxious, off-key sound.

4. Scoring: In Guitar Hero games, when the player falls behind, the game plays bad notes and eventually
boos them off stage. As the song plays, you will need to devise a way to keep score based on the
player's performance. If the player is missing notes, or not pressing notes at all, the song should stop
and they should lose! It is up to you to decide how you want to keep score and how you determine a
win, loss, or failure (song ends early), but you must be able to account for both incorrect and
missed notes.

5. A non-requirement: While the user is playing the game itself, you are NOT required to display

anything on the LCD. In other words, you are NOT required to display the typical “note highway”
found in Guitar Hero games. Instead, display the current note that needs to be pressed on the four multi-

ECE2049: Lab 2

ECE2049-E21 Page 11 of 16

colored LEDs. Updating the LCD in time with the song is a challenging task—you may implement this
for additional bonus points, but only try it after you have the rest of the lab working!

6. Endgame: Implement proper humiliation for losing using the display, buzzer, and LEDs. Conversely,
you should implement proper player congratulations for winning. After losing or winning, the game
should reset to the startup screen.

How will you make your game better than the rest? Multiple songs? Lighting effects? Improved buzzer
routines? Player difficulty levels? Remember, as always, you only have 8KiB of RAM and 128 KiB of flash.

NASA went to the moon with less on-board computing. What can you do?

ECE2049: Lab 2

ECE2049-E21 Page 12 of 16

Defining Notes in C

Below is a table of an octave of notes and their frequencies. You can use these notes as components of your
song—feel free to add more as well!

Note
Frequency

(Hz)

A 440

B flat 466

B 494

C 523

C sharp 554

D 587

E flat 622

E 659

F 698

F sharp 740

G 784

A flat 831

A 880

Note: You may wish to create #define statements for your notes. This is a good idea, but DO NOT define

them with single-letter names, like so:

#define A 440

#define C 523 // <-- Will not work!

It turns out that the name “C” is a macro in msp430.h. If you try and redefine this macro, you will receive

extremely cryptic error messages. This is why single-letter globally-defined variable names are a really bad
idea!

Instead, add some kind of prefix to your notes like this:
#define NOTE_A 440

#define NOTE_C 523 // OK!

Some example songs

• Beginning of “Three Blind Mice: E D C, E D C, F E D, F E D, …

• Intro to “Smoke on the Water”: C D Eb, C D F Eb, C D Eb D C, …(repeats)

ECE2049: Lab 2

ECE2049-E21 Page 13 of 16

Initializing Structs

If you are defining your song using structs, note that there are several ways to initialize struct fields. Consider
the example below:

// In C, a struct is a compound datatype, meaning a type that is

// composed of other types. You can think of it like a container

// to store multiple pieces of information about a single "object."

// (There are no "objects" in C per se, but this is a way to create a

// similar kind of data representation.)

//

// Example: A "thing" is composed of three "fields":

// an int (a), another int (b), and a char (c)

struct thing { // Define a struct

 int a;

 int b;

 char c;

};

struct thing s1; // Declare a struct (but don’t initialize it)

struct thing s2 = {1, 2, ‘X’}; // Set values for each parameter (in order)

struct thing s3 = {.a = 1, .b = 2, .c = ‘X’}; // Alternate form using named parameters

// We can also use the same methods to initialize an array of structs

struct things[10] = {

 {1, 2, ‘X’},

 {2, 1, ‘Y’},

 // . . .

};

Coding Standards

The game in this lab requires some element of real-time operation in that it requires your code to respond to the
keep track of the user’s button presses within a fixed timing constraint. This constraint requires that your code
to implement this part of the game be efficient—if you do too much extra work, you will notice lag in
responding to the user’s button presses. The goal of this is not only to teach you how to use interrupts, but to
help you build your skills in writing clean, efficient code while being mindful of timing and resource constraints.

As such, all of the previous coding standards about good control flow from lab 1 still apply to this lab. In
particular, try to avoid using too many nested loops or duplicating lots of code—you should be able to
implement the main portion of the game with a fairly simple structure.

Note: To encourage you to use good software design, you MUST store the song as some type of array—you
may NOT hard-code the notes of the song with a bunch of if statements! This would be a very poor design, as

you would need to change the code to change the song!

In addition, writing code with interrupts has some specific coding requirements: as stated in lecture, your
Interrupt Service Routines (ISRs) should be kept short since they interrupt the main execution of your program.
For this reason, you should avoid doing expensive operations from inside an ISR, such as:

• Drawing any text to the display

• Updating the LCD display using Graphics_FlushBuffer()

ECE2049: Lab 2

ECE2049-E21 Page 14 of 16

• Waiting in a loop until something happens

If you find yourself wanting to perform any of these tasks in an ISR, you should rethink your program’s design.
Please feel free to ask us for help on this!

When you are done: Signoff and Report

Signoff

When you are finished (at either stage 2 or stage 3): you should obtain a “signoff” by either 1) demonstrate
your work to the course staff for an in-person signoff, or 2) upload a short video demonstrating your lab’s
functionality. Please upload it to the Canvas assignment for the last stage you completed (stage 2 or stage 3).

Report and Final code submission

When you are done, write a short lab report and upload it and your code to the Lab 2 assignment on Canvas.

Your report should describe your major design choices for the components that you completed. In particular,
you should at least discuss the following:

Stage 1a: Buzzer

• How did you convert note frequency (Hz) to Timer B CCR0 settings to play a note?
Stage 1b: Buttons and LEDs

• What I/O pins did you select for the buttons and LEDs? How did you configure them?
Stage 2: Playing notes

• How did you define your song data structure?

• How did you configure the timer?

• How do you use the timer count to control the note’s duration?
Stage 3: MSP430 Hero (Only if you did this part)

• What are your rules for scoring?

General lab report guidelines

Your lab should be written in a professional style. It should be an electronically-prepared technical document
like what you would submit to a fellow engineer or your boss.
The report should include:

• Introduction (1-2 paragraphs max): Succinctly state the objectives of the lab and give an overview
of what you accomplished.

• Discussion and results: Discuss what you did in each part of the lab and how you solved any
problems. Describe what you did and be sure to thoroughly answer and explain the questions
asked in the lab assignment. In general, this section should be as long as necessary to say what
you need—no padding or fluff!

• Summary and Conclusion (1-2 paragraphs max): Summarize what you accomplished in the lab
and what you learned. This should be a “bookend” to the introduction.

• Appendices: You should not need any in this lab. DO NOT PASTE YOUR CODE INTO THE
END OF THE LAB REPORT! Instead, your code will be submitted as an archive file alongside
your report.

ECE2049: Lab 2

ECE2049-E21 Page 15 of 16

Lab reports are important. In industry, the FIRST view of YOUR work by anybody other than your
immediate supervisor will see will probably be in WRITING!

Learning to be an effective communicator of technical information is probably
THE MOST IMPORTANT

job skill you can have.

Exporting your Code

To submit your code for grading, you will need to create a zip file of your CCS project so that the course staff
can build it. You can also use this method to create a complete backup copy of your project (perhaps to send to
your partner or save for later). Unfortunately, the only reliable method for doing this is from inside CCS using

the instructions below—do NOT attempt to just create a zip file of your code. To export your code:

1. Inside CCS, right click on your project and select "Rename..."

2. If you are submitting your project, enter a name in the following format: ece2049e21_lab2_username,
where username is your WPI username. (NOTE: Failure to follow this step will result in points
deducted from your lab grade! If you don’t do it, it makes a lot of extra work for the graders!)

3. Click OK and wait for CCS to rename your project.
4. Right click on your project again and select "Export...” then select “General” and "Archive file" from

the list and click Next.
5. In the next window, you should see the project you want to export selected in the left pane and all of the

files in your project selected in the right pane. Select all. You should not need to change which files are
selected.

6. Click the "Browse" button, find a location to save the archive (like your R drive) and type in a file name
using the EXACT SAME NAME used in Step (2).

7. Click "Finish". CCS should now create a zip file in the directory you specified.
8. Go to the Assignments page on the class Canvas website. Click on the assignment for Lab 0 and attach

the archive file of your project that you just created and your report. When you are ready, hit the Submit
button. Only one code and report submission is required per team.

ECE2049: Lab 2

ECE2049-E21 Page 16 of 16

Grading Rubric

Points for this lab are allocated based on the following rubric:

Item Points

Prelab assignment 10

Stage 1a: Buzzer

Modified buzzer function to play tones 10

Stage 1b: Buttons and LEDs

Hardware configuration and helper functions for LEDs 15

Hardware configuration and helper functions for buttons 15

Hardware test code in main() to demonstrate button and LED functionality 5

Stage 2: Playing notes

Timer A2 properly configured with resolution set to 0.005s or less 10

Song defined using a data structure representing (at least) pitch and duration for each note 10

Playback of song with ≥ 16 notes using Timer A2 to measure note duration;
Song must have notes of at least two different durations

20

BONUS: Checking buttons and lighting up launchpad LED to indicate correct note pressed (+10)

Stage 3: MSP430Hero (BONUS)

Playing game using LED to prompt for note, playing buzzer when correct button pressed (+5)

Score keeping including handling for both missed and incorrect notes (+5)

Indication of win/loss based on player score (+5)

Report (answering questions listed in When you are done: Signoff and Report) 50

Total Points 150

	ECE2049 – Embedded Computing in Engineering Design
	Lab 2: Music Player++
	Lab Assignment
	Stage 0: Pre-lab
	Overview
	Stage 1: Buzzer
	Stage 2a: Buttons and LEDs
	Selecting I/O pins
	Connecting the LEDs
	Connecting the buttons

	Stage 2: Play some notes
	Stage 3: MSP430Hero! (BONUS)
	System Requirements

	Defining Notes in C
	Initializing Structs
	Coding Standards
	When you are done: Signoff and Report
	Signoff
	Report and Final code submission
	General lab report guidelines
	Exporting your Code

	Grading Rubric

