ECE2049 E22: Homework 1 Solutions

Problem 2

Part a

First, convert 0x4048 from hex to binary: 010000000100 1000b
Convert to unsigned int:
$\left(1 * 2^{14}\right)+\left(1 * 2^{6}\right)+\left(1 * 2^{3}\right)+=16456$
Convert to sign magnitude int:
The most significant bit (MSB) is 0 , so we know this number is positive and thus has the same representation as above:
$\left(1 * 2^{14}\right)+\left(1 * 2^{6}\right)+\left(1 * 2^{3}\right)+=16456$
Convert to two's complement int:
Again, the MSB is zero, so this number is positive. Therefore, we can just write out the number as if it were unsigned.
$\left(1 * 2^{14}\right)+\left(1 * 2^{6}\right)+\left(1 * 2^{3}\right)+=16456$

Part b

First, convert 0x448C to binary: 010001001000 1100b
Convert to unsigned int:
$\left(1 * 2^{14}\right)+\left(1 * 2^{10}\right)+\left(1 * 2^{7}\right)+\left(1 * 2^{3}\right)+\left(1 * 2^{2}\right)=17548$
Convert to sign magnitude int: MSB is 0 , so result is positive:
$\left(1 * 2^{14}\right)+\left(1 * 2^{10}\right)+\left(1 * 2^{7}\right)+\left(1 * 2^{3}\right)+\left(1 * 2^{2}\right)=17548$
Convert to two's complement int: MSB is 0 , so result is positive:
$\left(1 * 2^{14}\right)+\left(1 * 2^{10}\right)+\left(1 * 2^{7}\right)+\left(1 * 2^{3}\right)+\left(1 * 2^{2}\right)=17548$

Part c

First, convert 0xDEED to binary: 110111101110 1101b
Convert to unsigned int:
$\left(1 * 2^{15}\right)+\left(1 * 2^{14}\right)+\left(1 * 2^{12}\right)+\left(1 * 2^{11}\right)+\left(1 * 2^{10}\right)+\left(1 * 2^{9}\right)+\left(1 * 2^{7}\right)+\left(1 * 2^{6}\right)+\left(1 * 2^{5}\right)+\left(1 * 2^{3}+\left(1 * 2^{2}\right)+\left(1 * 2^{0}\right)=\right.$ 57069

Convert to sign magnitude int: MSB is 1 , so result is negative.
$\left(1 * 2^{14}\right)+\left(1 * 2^{12}\right)+\left(1 * 2^{11}\right)+\left(1 * 2^{10}\right)+\left(1 * 2^{9}\right)+\left(1 * 2^{7}\right)+\left(1 * 2^{6}\right)+\left(1 * 2^{5}\right)+\left(1 * 2^{3}+\left(1 * 2^{2}\right)+\left(1 * 2^{0}\right)=-24301\right.$
Convert to two's complement int: MSB is 1 , so result is negative - therefore we must use the two's complement procedure to find the magnitude of the number.

Original	1	1	0	1	1	1	1	0	1	1	1	0	1	1	0	1
Complement	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0
Add 1	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Magnitude	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	1

$\left(1 * 2^{13}\right)+\left(1 * 2^{8}\right)+\left(1 * 2^{4}\right)+\left(1 * 2^{1}\right)=-8,467$

Problem 2

The description gives us a way to interpret an 8-bit binary number: we can use this information to infer the state of the "relays" described by the problem.

According to the description, the most significant bit of the output value v corresponds to relay R7, and the least significant bit corresponds to R0. Writing the output value (0x5B) as a binary number we can see the state of each relay:

$$
\begin{array}{r|cccccccc}
\text { Relay } & \mathrm{R} 7 & \mathrm{R} 6 & \mathrm{R} 5 & \mathrm{R} 4 & \mathrm{R} 3 & \mathrm{R} 2 & \mathrm{R} 1 & \mathrm{R} 0 \\
\hline v & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}
$$

Let us assume that a state of 1 means the relay is on, and 0 indicates the relay is off. Based on this assumption, relays R6, R4, R3, R1, and R0 have a state of 1 , meaning they are on. The other relays are off.

