ECE2049 E22: Homework 1 Solutions

Problem 2

Part a

First, convert 0x4048 from hex to binary: 0100 0000 0100 1000b

Convert to unsigned int:

 $(1 * 2^{14}) + (1 * 2^6) + (1 * 2^3) + = 16456$

Convert to sign magnitude int:

The most significant bit (MSB) is 0, so we know this number is positive and thus has the same representation as above:

 $(1 * 2^{14}) + (1 * 2^6) + (1 * 2^3) + = 16456$

Convert to two's complement int:

Again, the MSB is zero, so this number is positive. Therefore, we can just write out the number as if it were unsigned.

 $(1 * 2^{14}) + (1 * 2^6) + (1 * 2^3) + = 16456$

Part b

First, convert 0x448C to binary: 0100 0100 1000 1100b

Convert to unsigned int:

 $(1 * 2^{14}) + (1 * 2^{10}) + (1 * 2^7) + (1 * 2^3) + (1 * 2^2) = 17548$

Convert to sign magnitude int: MSB is 0, so result is positive: $(1 * 2^{14}) + (1 * 2^{10}) + (1 * 2^7) + (1 * 2^3) + (1 * 2^2) = 17548$

Convert to two's complement int: MSB is 0, so result is positive: $(1 * 2^{14}) + (1 * 2^{10}) + (1 * 2^7) + (1 * 2^3) + (1 * 2^2) = 17548$

Part c

First, convert 0xDEED to binary: 1101 1110 1110 1101b

Convert to unsigned int:

 $(1*2^{15}) + (1*2^{14}) + (1*2^{12}) + (1*2^{11}) + (1*2^{10}) + (1*2^9) + (1*2^7) + (1*2^6) + (1*2^5) + (1*2^3 + (1*2^2) + (1*2^0) = 57069$

Convert to sign magnitude int: MSB is 1, so result is negative.

$$(1*2^{14}) + (1*2^{12}) + (1*2^{11}) + (1*2^{10}) + (1*2^9) + (1*2^7) + (1*2^6) + (1*2^5) + (1*2^3 + (1*2^2) + (1*2^0) = -24301$$

Convert to two's complement int: MSB is 1, so result is negative—therefore we must use the two's complement procedure to find the magnitude of the number.

	Original		1	1	0	1	1	1	1	0	1	1	1	0	1	1	0	1
	Complement		0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0
	Add 1	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
-	Magnitude		0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	1

 $(1 * 2^{13}) + (1 * 2^8) + (1 * 2^4) + (1 * 2^1) = -8,467$

Problem 2

The description gives us a way to interpret an 8-bit binary number: we can use this information to infer the state of the "relays" described by the problem.

According to the description, the most significant bit of the output value v corresponds to relay R7, and the least significant bit corresponds to R0. Writing the output value (0x5B) as a binary number we can see the state of each relay:

Relay	R7	R6	R5	$\mathbf{R4}$	R3	R2	R1	R0
\overline{v}	0	1	0	1	1	0	1	1

Let us assume that a state of 1 means the relay is on, and 0 indicates the relay is off. Based on this assumption, relays R6, R4, R3, R1, and R0 have a state of 1, meaning they are on. The other relays are off.