
ECE2049 E22: Homework 6 Solutions

Problem 1

Part a

Vmin = 0.00475 ∗ (−60°C) + 1.29V = 1.005V

Vmax = 0.00475 ∗ (90°C) + 1.29V = 1.7175V

Part b

Since the full range of voltages returned by the sensor will be 1.005V to 1.1715V, VREF+ should be selected
as 2.5V. This will measure the highest resolution possible while ensuring that it is possible to measure the
full temperature range.

Part c

The sensor equation is linear with a slope of 0.00475V / ° C.

With a 12-bit ADC and a reference voltage of 2.5V, the resolution can be computed as:

2.5V
212 bits

= 0.000610V/bit

Using this information, we can find the change in temperature per bit by setting up a ratio:

0.000610V
1 bit

∗ 1°C
0.00475V

≃ 0.12842°C/bit

Part d

First we need to find the voltage output by the sensor at this temperature, VTemp:

VTemp = V (24.8 C) = 0.00475 ∗ (24.8°C) + 1.29V = 1.408V

Next, we can compute the ADC code for this voltage based on our ADC12 configuration. There are two
ways to do this. The simplest way involves using the resolution:

ADC Output = ⌊VIN/Resolution⌋ = ⌊(1.408V)/(0.000610V/bit)⌋ = ⌊2306.54⌋ = 2306

It is technically more precise to use the full equation for the ADC:

ADC Output =

⌊
VSensor − VREF−

VREF+ − VREF−
∗ (2k − 1)

⌋
(1)

Since VREF− = 0V , we can write:

ADC Output =

⌊
VSensor

VREF+

∗ (2k − 1)

⌋
=

⌊
VSensor ∗

2k − 1

VREF+

⌋
(2)

1

Thus, for our problem: VTemp =
⌊
1.408V ∗ 212−1

2.5V

⌋
= ⌊2306.3⌋ = 2306

The difference between the two methods is subtle: the second version uses (2k − 1) in place of 2k: this
ensures that a code with the maximum value of 4095 represents the maximum voltage value for VREF+.

Part e

This problem is the inverse of part (d). First, we find the VTemp corresponding to this ADC code:

VTemp = (ADC Code) ∗ (Resolution) = (2415 bits) ∗ (0.000610V/bit) = 1.47V

Then we can compute the temperature based on the equation for the sensor:

1.47V = 0.00475 ∗ (Temp°C) + 1.29V
Temp = 38.73°C

Part f

// We can perform this conversion in a similar manner to

// part (e): first we find the voltage that corresponds to the ADC

// code , then we can find the temperature

#define VOLTS_PER_BIT (.000610f) // (2.5/4095)

float convert_temp(unsigned int adc_code) {

float volts = ((float)adc_code) * VOLTS_PER_BIT;

float deg_c = (volts - 1.29) / 0.00475;

return deg_c;

}

2

Problem 2

Part a

The maximum value that can fit in a 32-bit unsigned integer is 232 − 1 = 4294967295. We also can figure
out that there are 31,5360,000 seconds in a year. With the following calculation we can find the number
of years held in a maximum value 32-bit unsigned integer:

4, 294, 967, 295sec ∗ 1year
31,540,000sec

= 136.18 years

Which approximates to 136 years.

Part b

count = 5217504 in seconds

We can compute the number of days, hours, minutes, and seconds as follows:
3665044 sec ∗ 1day

86400sec
= ⌊42.41040907days⌋ = 42 days

3665044 sec mod 86400sec
1day

= 36244seconds left

⌊36244 sec ∗ 1hour
3600sec

⌋ = 10 hours

36244 sec mod3600sec
1hour

⌋ = 244 seconds left

⌊244 sec ∗ 1min
60sec

⌋ = 4 min

244 sec mod 60sec
1hour

⌋ = 4 seconds

The count of 42 days indicates the date is February 12th: 42 full days (31 + 11) have elapsed, meaning
the remaining number of seconds indicates the current time is on February 12th.

42 days, 10 hours, 4 min, 4 sec is February 12th 10:04:04 AM

3

Problem 3

Since our timer interrupts at 25ms intervals, we need to modify main such that do thing is called every
500ms, or 500ms

25ms/interrupt
= 20 interrupts.

We can do this by recording the time count of the last update—when the current time exceeds the last
update time by 20 ticks, we should do the thing.

volatile unsigned long time_count = 0;

#pragma vector=TIMER2_A0_VECTOR

__interrupt void TIMER_ISR(void) {

time_count ++;

}

void main(void) {

unsigned long last_update = 0;

configure_everything ();

start_25ms_timer ();

_enable_interrupt ();

while (1) { // Compare the current time to the time of the last update

if ((time_count - last_update) >= 20) {

do_thing ();

// Record the time of the last update for the next iteration

last_update = time_count;

}

}

}

A potential alternative would be to use an if statement with a modulo operation to run the function on
every 20th tick, as follows:

while (1) {

if((time_count % 20) == 0) {

do_thing ();

}

}

However, this approach may miss a call to the function if do thing, or another part of the program, is
running while the counter is a multiple of 20. If the if statement is only evaluated at time 19 and time
21, the function will miss its deadline. Using this “every N’th tick” method is primarily suitable when

scheduling tasks in an ISR, since we know that the statement will be evaluated on each interrupt.

4

