

ECEDGLERLYE qq.pt
ty.opmIn.cdTTfmens

part 2
tomoron 35pmRusin

FREY EMAILME

ADINIÉ Out After Class DUETHURS
CONTAINS SHORTSURVEY PLEASE DO

ASAP YOUR FEEDBACK WILL HELP ME
SHAPE THEREST OF THE COURSE

LABI DEADLINE POSTPONED DETAILS
TOMORROW

ECE2049-E22 8-9

Using this information, we can write the register configuration:

Parameters we know Relevant register field

We can use this to write:

TA2CTL =

TA2CCR0 =

TA2CCTL0 =

is
i

CLOCK SOURCEACLK TASSEL I

DIVIDER DIVIDE BY1 I D O
MAX INT 327 TAZCCRO

TASSEL I MC I D O

j
327
CLIE

y
THIS CONFIGURES THE
TIMER TO TRI660N

INTERRUPTS AT

Tn took

Timer_A Registers www.ti.com

17.3.1 TAxCTL Register
Timer_Ax Control Register

Figure 17-16. TAxCTL Register
15 14 13 12 11 10 9 8

Reserved TASSEL
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0
ID MC Reserved TACLR TAIE TAIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Table 17-4. TAxCTL Register Description

Bit Field Type Reset Description
15-10 Reserved RW 0h Reserved
9-8 TASSEL RW 0h Timer_A clock source select

00b = TAxCLK
01b = ACLK
10b = SMCLK
11b = INCLK

7-6 ID RW 0h Input divider. These bits along with the TAIDEX bits select the divider for the
input clock.
00b = /1
01b = /2
10b = /4
11b = /8

5-4 MC RW 0h Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.
00b = Stop mode: Timer is halted
01b = Up mode: Timer counts up to TAxCCR0
10b = Continuous mode: Timer counts up to 0FFFFh
11b = Up/down mode: Timer counts up to TAxCCR0 then down to 0000h

3 Reserved RW 0h Reserved
2 TACLR RW 0h Timer_A clear. Setting this bit clears TAR, the clock divider logic (the divider

setting remains unchanged), and the count direction. The TACLR bit is
automatically reset and is always read as zero.

1 TAIE RW 0h Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0b = Interrupt disabled
1b = Interrupt enabled

0 TAIFG RW 0h Timer_A interrupt flag
0b = No interrupt pending
1b = Interrupt pending

478 Timer_A SLAU208O–June 2008–Revised May 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

Et FOR TREN AZ A FAZCTL

0 0 0 0 0 0 Of
0 0

11
O O O O

0 0110
Az CTL040110

Ib A 32768kg

P OPTIONAL ANDIVIDE00 fate to slow it DOWN

01 Fee

551 8 88 ooodoooooood

orm _o
040

Timer_A Registers www.ti.com

17.3.3 TAxCCTLn Register
Timer_Ax Capture/Compare Control n Register

Figure 17-18. TAxCCTLn Register
15 14 13 12 11 10 9 8

CM CCIS SCS SCCI Reserved CAP
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0) r-(0) rw-(0)

7 6 5 4 3 2 1 0
OUTMOD CCIE CCI OUT COV CCIFG

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

Table 17-6. TAxCCTLn Register Description

Bit Field Type Reset Description
15-14 CM RW 0h Capture mode

00b = No capture
01b = Capture on rising edge
10b = Capture on falling edge
11b = Capture on both rising and falling edges

13-12 CCIS RW 0h Capture/compare input select. These bits select the TAxCCR0 input signal. See
the device-specific data sheet for specific signal connections.
00b = CCIxA
01b = CCIxB
10b = GND
11b = VCC

11 SCS RW 0h Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0b = Asynchronous capture
1b = Synchronous capture

10 SCCI RW 0h Synchronized capture/compare input. The selected CCI input signal is latched
with the EQUx signal and can be read via this bit.

9 Reserved R 0h Reserved. Reads as 0.
8 CAP RW 0h Capture mode

0b = Compare mode
1b = Capture mode

7-5 OUTMOD RW 0h Output mode. Modes 2, 3, 6, and 7 are not useful for TAxCCR0 because EQUx
= EQU0.
000b = OUT bit value
001b = Set
010b = Toggle/reset
011b = Set/reset
100b = Toggle
101b = Reset
110b = Toggle/set
111b = Reset/set

4 CCIE RW 0h Capture/compare interrupt enable. This bit enables the interrupt request of the
corresponding CCIFG flag.
0b = Interrupt disabled
1b = Interrupt enabled

3 CCI R 0h Capture/compare input. The selected input signal can be read by this bit.
2 OUT RW 0h Output. For output mode 0, this bit directly controls the state of the output.

0b = Output low
1b = Output high

480 Timer_A SLAU208O–June 2008–Revised May 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

TAZCCTLg

INTOCCURS
WHEN MAK CNT IS REACHED

I

Timer_A Registers www.ti.com

17.3.4 TAxCCRn Register
Timer_A Capture/Compare n Register

Figure 17-19. TAxCCRn Register
15 14 13 12 11 10 9 8

TAxCCRn
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0
TAxCCRn

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Table 17-7. TAxCCRn Register Description

Bit Field Type Reset Description
15-0 TAxCCR0 RW 0h Compare mode: TAxCCRn holds the data for the comparison to the timer value

in the Timer_A Register, TAR.
Capture mode: The Timer_A Register, TAR, is copied into the TAxCCRn register
when a capture is performed.

17.3.5 TAxIV Register
Timer_Ax Interrupt Vector Register

Figure 17-20. TAxIV Register
15 14 13 12 11 10 9 8

TAIV
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
TAIV

r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

Table 17-8. TAxIV Register Description

Bit Field Type Reset Description
15-0 TAIV R 0h Timer_A interrupt vector value

00h = No interrupt pending
02h = Interrupt Source: Capture/compare 1; Interrupt Flag: TAxCCR1 CCIFG;
Interrupt Priority: Highest
04h = Interrupt Source: Capture/compare 2; Interrupt Flag: TAxCCR2 CCIFG
06h = Interrupt Source: Capture/compare 3; Interrupt Flag: TAxCCR3 CCIFG
08h = Interrupt Source: Capture/compare 4; Interrupt Flag: TAxCCR4 CCIFG
0Ah = Interrupt Source: Capture/compare 5; Interrupt Flag: TAxCCR5 CCIFG
0Ch = Interrupt Source: Capture/compare 6; Interrupt Flag: TAxCCR6 CCIFG
0Eh = Interrupt Source: Timer overflow; Interrupt Flag: TAxCTL TAIFG; Interrupt
Priority: Lowest

482 Timer_A SLAU208O–June 2008–Revised May 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

IMA

T
MAX CNT

GOESHERE

01

ECE2049-E22 8-10

Step 4: Write Interrupt Service Routine (ISR) and enable interrupts

… how do we write interrupts in our code, anyway?

An ISR for Timer A2 looks like this:
// Example syntax for TimerA2 ISR
#pragma vector=TIMER2_A0_VECTOR
__interrupt void TIMER_A2_ISR(void)
{
 // Do something
 // ...
}

In addition, in your main() you must enable interrupts to tell the CPU to handle them:
// Using pre-defined macros in msp430.h

_BIS_SR(GIE); // Global interrupt enable
// ... OR ...
__enable_interrupt();
(The above macros are equivalent. You will see both of them in example code and notes in this class.)

01

INTO FUNCTION
IN CODE

ADDS THIS FUNCTION AR

TO INTERRUPT VECTOR TABLE
For TMENAZ

ECE2049-E22 8-11

Back to the example: what does it mean when we get an interrupt from Timer A2?
What should the ISR do?

Each interrupt means that the timer has reached MAX_CNT, meaning that 328 ticks of ACLK
~= 0.01s have elapsed.

Thus, the ISR should count how many interrupts have occurred… and do nothing else:
// Global count of clock ticks
unsigned long int timer = 0;

#pragma vector=TIMER2_A0_VECTOR
__interrupt void TIMER_A2_ISR(void)
{

}

Important note: ALWAYS keep your ISRs short. Why?
What happens if your ISR hasn't completed before the next ISR arrives?

In general, NEVER do any of the following in an ISR:

• Write to the display
• Flush the display
• Do floating point math
• Call expensive functions like sin() or sprintf()

FORTIMER IT MEANS THATAnt HASELAPSED

COUNTER NUMBER OF
INTERVALS OFAIN THAT
HAVEELAPSED

TIMER 14 Ex TIMER 1234
AWF 0.012
234TICKS OOHack

KBEGGED

t.ee

THINGSYOUCAN DO
peppline MISSEDCOUNTERS

IF STATEMENTS
DIGITAL yo ping

NEXT ISR WILL
BE LATE

SETICLEAR FLAGS TAKES TIMEAWAY
From MAINI

tandsoroolt GE

KEEP TRACK OF ELAPSED TIME

IF EVENT 6

START TIME I TIMOR
E
a a

i
SCHEDULE EVENTS EVENT N TICKS

IF CITIMONY N e o E
po THIN I

pig is BEST
FOR SCHEDULING EVENTS

INSIDIAN ISR
MOREON THIS LATER

ECE2049-E22 8-12

Examples: Using the timer variable

Stopwatch
Now that our ISR is properly configured, what does the variable timer represent? How do you
use it to actually display the time?

The timer represents the number of 0.01 second intervals that have elapsed since Timer A2 was
started. To use it, we need to convert this to minutes and seconds in order to display it.

How do we do this? Note that we want to do it using integer math, since floating point is slow
and we eventually want to put this information on the display.

UNSIGNED LONG THEN 2517

Anti O OR JETTISON rents NUMBEROF
INTERVALS OF

D.HN tint THATT FRACTIONAL HAVE ELAPSED

INTEGERPART PART SINCE
TIMER

WAS STARTED

NT.to
tmt 10 1125

MIN TOTAL SEC 60 11 0
SEC TOTAL SECY 60 1125

IT TOTAL FRAL TIMERY 100 1117

TENTHS TOTAL FRAC 19 111

HUNDREDTHS TOTAL FRACY101117
CAN GETALL
OFTHESE PARTS

W JUST INTER
MATH

ECE2049-E22 8-13

Timer accuracy

How accurate will our stopwatch be? Is that accuracy acceptable?
The duration of one ACLK tick = 1/32768 Hz = 3.05e-5 seconds

tin O ok

Mfi
3,14 0.01000592

WHEN WE SAY G OL HAS ELAPSED
ACTUALTMEiS_HIGHER
OK FOR LAB NOT FOR OLYMPICS

Tty
REPORTED TIME TIMEREPORTED OR USED

By DEVIEOVER SOREINTERVAL

NÉE REALTIME THATHAS ELAPSED
OVER THAT INTERVAL

IF ACTUAL TIME REPORTEDTIME DEVICE

issue
IF ACTUAL TIME L REPORTED TIME 7 DEVICE

IS FAST

e
IS OFF BY D OL WE WILL SHOW THE

t

WRONG VALUE H
HOW LONG UNTIL ERROR ADDS UP TO O ON

HOW MANY INTERRUPTS

0.012 X INTERRUPT REPORTED TIME ACTUALTime

0.012 X Ints 0.01s 0.010009576

4 1023,661 A 1024INTERRUPTS
A 10.24SECONDS

EVERY 10.29 SECONDS DISPLAY IS OFF BY
0.01

HOW DO WE COMPENSATE FOR THIS
LEAP COUNTING

STRATEGY SINCE TIMER IS SLOW BY ONE
INTERVAL EVERY 1029 INTERRUPT CORRECT

BY ADDING 1 INTERNAL EVERY 1029 INTERRUPTS

LEAP COUNT

LEPSIJOND

