

ECE 2049 LECTURE 12

ADMINISTRIVIA

HWI DOE TODAY BY 1159PM EDT

6 OUTAFTER CLASS DUE TUES 628

LECTURE 13 TUESDAY WILL BEPOSTED AS A
RECORDING CNOLIVECL D BUT ITWILL BEGOOD

WILL ADD OFFICE HOURS UPDATESOON

432 NOW DUE NEXT WED 629

IF YOU HAVE OTHER OUTSTANDINGiii

ME ASAP TO LET ME KNOW YOURSTATUS
IF YOU HAVE NOT DONE SO ALREADY

I CAN BE FLEXIBLE BUT YOU MUSTATTEMPT
ALL REQUIRED LABS LABO LABI LABE
TO RECEIVE A PASSING GRADE

LABI EXTRA BONI LAB OUT
NEXT WEEK DUE BY WED 7 5

ECE2049: Homework 5

ECE2049-E22 Page 1 of 1

Content: Lectures 10-11
Due: Thursday, June 23 by 11:59pm EDT

Submission notes:

• For full credit, please show your work and denote your answers with a circle or a box.
• Always write or draw your diagrams neatly! We cannot be expected to GUESS what you meant to

write! Some problems (such as those involving code) must be typed to be graded—the others may be
handwritten (neatly!) or typed.

• Points for each problem are as indicated. Some portions of problems are marked as “BONUS,” which
count as extra credit.

1. (5 pts) Please complete the “Interim Course Survey” located in the Quizzes section of our course page on

Canvas, located here: https://canvas.wpi.edu/courses/35856/quizzes/48849

This survey is designed to help me plan the remainder of term. Your feedback is extremely useful for
helping me accommodate everyone and create a comfortable learning environment. Your responses are
anonymous, unless you choose to include your contact information—otherwise, Canvas will just
record that you completed the survey.

2. (10 pts) For a certain application, Timer A2 has been configured as shown below with the goal of

creating periodic interrupts every 0.005 seconds.

void runtimerA2(void)
{
 TA2CTL = TASSEL_2 | MC_1 | ID_2;
 TA2CCR0 = 1309;
 TA2CCTL0 = CCIE; // Enable timer A2 interrupt
}

a. Assuming that ACLK, SMCLK, and MCLK are running at their default settings, what is the

exact time between interrupts, !!"#? (Your answer should be close to 0.005 sec.)

b. If the system clock and timer settings from this problem are used to implement some kind of
time-critical system, how long until the time count is off by 0.005 seconds? Will it be fast or
slow? How do you know?

c. Write an interrupt service routine for Timer A2 for this application, using a single level of leap

counting to keep the display accurate for longer.

Ant 0.0052

Asmatnone
DIVIDE BYYACLK E 32768142

SMCLK 7 1048576Hy

tint 0005
RYYEI.TT

Tnt are 1 17
0049712

TINTREPORTED G00.5s

ACTUAL L REPORTED FAIT
f

G 0052 X INTERRUPTS tintperusetint Report

0.005s X Ints 0.005 0.00997231

X 1820 44 T 1820 INTERRUPTS

890 INTERRUPTSC0054in 59.102J

DEVICE IS FAST SKIP A COUNT

TIMER O

LEAP CNT O

ISRC IS
IF LEAP CNT 2 I820
TIMER
LEAP CUTTY

Z ELSE I
LEAP CNT D

g

HDON'T CHANGE TIMER SKIP

ECE2049-E22 9-1

Module 9. Analog to Digital Conversion
Topics

• More on timers
• Starting Analog to Digital Conversion

Warmup: Analyzing a timer configuration

1. What is the period of the timer with the configuration below? (How often are interrupts
generated?)
void runtimerA2(void)
{
 TA2CTL = TASSEL_2 | MC_1 | ID_3;
 TA2CCR0 = 32767;
 TA2CCTL0 = CCIE; // Enable timer A2 interrupt
}

2. The ISR for the timer above increments a counter called timer on each interrupt. If
timer = 2447, how much time has elapsed since the timer was started?

ISRO
TIMER

S

TASSEL 2 7SACK
tint Me I upmore

ID 3 7 DIVIDEBY 8
tint IE MgII

25

2 FIND ELAPSEDTIME

2447INTERRUDTS HAVE
OCCURRED

2447INTERVALS ZEMINTERRUPT

HI

ECE2049-E22 9-2

Analog to Digital Converters (ADCs)
Analog to Digital Converters (ADCs), or A/D converters, have become ubiquitous in embedded
applications.

• ADCs return a binary code to represent a measured voltage from within a fixed range of
voltages

• Small voltages return "low valued" codes, greater voltages return "larger" codes

For example, within the range of 0–3V, a 10-bit ADC could return codes like these:
00 0000 0000b = 000h = 0d
01 1111 1111b = 1FFh = 512d
11 1111 1111b = 3FFh = 1023d

• It is very likely that you will use an ADC when you take ECE2799, do your MQP, or

work on a robotics project!

I

I
3.3NXDISCRETE ANALOG

of
Continuous

g JvDIGITAL

yg 210 1024Possible
costs

SENSORS

ECE2049-E22 9-3

ADC Concepts

When an analog signal is “read” by an ADC, the analog value of the signal is sampled to obtain
a k-bit digital representation of that value at that time.

ECE2049-E22 9-5

Key Concepts for using Analog to Digital Converters
(or performing any measurements)

1. Full Scale Range (FSR): The maximum range of analog values that can be represented
This is defined as the total range of voltages between VREF+ and VREF-

2. Resolution (for a single bit): The smallest change in value that can be measured
You can think of this as the "value of 1 bit" in an output code.

3. Dynamic range: Ratio of largest to smallest values that can be measured
The dynamic range is usually expressed in decibels (dB), and can be computed as follows:

tintype t.co.DE SR YEFt HetW
SCLKEx.FSR 3V
OVgVRtty at

Resolution F1KÉBER OF

BITS INADC
Ex FSR of 3.20

k 12
REST IT 4FWM 4 EÉLI jt DIFFERENCE IS ONE Unit I 0.79nl

DR 2Olog 2K

Ex For ADC 12 KK

DR 20dgo 214
72.21dB

ECE2049-E22 9-6

Thinking about data representations

As an embedded systems engineer, you get to decide how to make your sensors interface
with the ADC! Knowing how your external sensor works and how to "map" it to the ADC
you're using is as critical as knowing how to make the MSP430 read the value!
Here’s a way to think about how sensor measurements are represented as digital values:

SENSOR

Domain Is Donna Domain

Circuit

717 name co
in n

o k D
CURRENT A

n

n.gg

jj

oooh Ftth
ACCLIMATION Y

ADC

Diana
P'gtdSENSOR

ADC BINSOME FORMAT
OVER SOMEINTERFACE

ECE2049-E22 9-7

Example: Current sensor
You can make a simple digital current meter by measuring the voltage across a small sensing
resistor.
Can we use the ADC12 on the MSP430 to measure current in the range 0–1A with 1mA
accuracy? How about to 0.1mA accuracy?

For now, let's assume we have an FSR of 2.5V.

thing
G 2 su 2.54
Fi

a

MY FAT MIGHTNEED
EXTRA CIRCUITRY

CANWEG.LT MAACCURAcyWITHADCR
F5R Z 5V RESOLUTION

Res Ef Ef am 15t z44mt

f2ImA
BIT i YES

COULD WE GET 1mA Accuracy
No

Img EST
NO TO IMPROVE ACCURACY WOULD NEED to

MEASURE OVER SMALLER RANGE OR GETA BETTER
ADC

ECE2049-E22 9-9

Core configuration registers
The ADC12 conversion core is configured using ADC12CTL0 and ADC12CTL1.

ADC12CTL0 controls the following options:

• Sample and Hold Time (ADC12SHT1x, ADC12SHT0x): Controls sampling period

• Multiple sample conversion method (ADC12MSC)

• Reference voltages (ADC12REF2_5V and ADC12REF_ON)
• ADC12ON bit: Turns on the ADC12! (It's off by default!)

• Enable conversions (ADC12ENC): Must be set to 1 before ADC will perform

conversions! When set to 0, ADC can be configured.

• Start conversion (ADC12SC): Starts a conversion!

• Overflow/conversion time interrupt enables (ADC12OVIE, ADC12TVIE)
ADC12CTL1 controls the following options:

• Conversion start address (ADC12STARTADDx)

• Sample and hold source select (ADC12SHS):
• Sample and hold pulse mode select (ADC12SHP): Always set this to 1
• Invert signal sample and hold (ADC12ISSH)

• ADC12 clock divider (ADC12DIVx): Typically use 1
• ADC12 clock source select (ADC12SSELx):

• Conversion mode select (ADC12CONSEQx): Can select single, multi-channel, or
repeated conversions

• ADC12 busy bit (ADC12BUSY)

ECE2049-E22 9-10

Results from each channel are stored in the low 12 bits of one 16 bit Conversion Memory
Register (ADC12MEMx).

Each memory register has a corresponding Conversion Memory Control Register
(ADC12MCTLx).

Each ADC12MCTLx controls one channel on which a conversion can occur. The conversion
parameters for channel x is controlled by Memory Control Register x, and the result gets stored
in memory register x.

Each ADC12MCTLx controls the following options:

• Reference voltage select (ADC12SREFx): Important settings are as follows:

• Analog input channel select (ADC12INCH_x):

• End of Sequence (EOS): Set to 1 if this channel is the end of a sequence of channels.
Used for multi-channel conversions.

So, as a programmer, what do you need to use the ADC12?

ECE2049-E22 9-13

// Current sensor conversion example
void config_adc(void) {
/* ***** Core configuration ***** */

// Reset REFMSTR to enable control of reference voltages by ADC12
REFCTL0 &= ~REFMSTR;

/*
 * Initialize control register ADC12CTL0
 * STH0x = 9 => 384 clock cycles; MSC = 0 => no multisample mode
 * REF2_5V = 1 => Reference is 2.5V, REFON = 1 => Use internel reference generator
 * ADC12ON = 1 => Turn on ADC12
 */
ADC12CTL0 = ADC12SHT0_9 | ADC12REFON | ADC12REF2_5V | ADC12ON;

/*
 * Initialize control register ADC12CTL1
 * STARTADDx = 0 => Start conversion at ADC12MEM0
 * SHSx = 0 => Conversion trigger: Start when ADC12SC is set to 1
 * SHP = 1 => SAMPCON sourced from sampling timer (default)
 * ISSH = 0 => Input signal not inverted
 * SSEL = 0 => ADC12clock = ADC12OSC (~5 MHz)
 * DIVx = 0 => Divide ADC12CLK by 1
 * CONSEQx = 0 => Single channel, single conversion mode
 */
ADC12CTL1 = ADC12SHP;

/* ***** Channel configuration ***** */

// Set conversion memory control register ADC12MCTL0
// SREF = 001b => Voltage refs:
// EOS = 0 => End of sequence not set (not a multi-channel conversion, so ig-
nore)
ADC12MCTL0 = ADC12SREF_1 | ADC12INCH_0;

// Set P6.0 to FUNCTION mode
// This connects the physical pin P6.0/A0 to the ADC input A0
P6SEL |= BIT0;

// Enable the ADC. This means we are done configuring it,
// so we can start the conversion.
ADC12CTL0 |= ADC12ENC;

}

	

ECE2049-E22 9-16

More ADC features

Multi-channel conversion

What if we wanted to read data from two sensors? Consider the following sensors:

• Our current sensor example from earlier (connected to input channel A0, 2.5V reference)
• A barometric pressure sensor (Input channel A4, 3.3V reference)

These sensors require different settings for reference voltages and inputs.
We could reconfigure the ADC every time we wanted to take a measurement, but this would be
annoying. Instead, the ADC12 provides several different conversion modes to solve this
problem. We will discuss the most straightforward: multiple channel, single conversion mode.

To perform readings from two sensors, we will need to use two ADC12MEMx registers, one for
each channel.

Like the previous examples, we need to:

• Configure the ADC12 core, this time selecting multiple-channel, single conversion mode
• Configure one ADC12MEMx register for each reading we want to perform with the

appropriate settings for each channel (ie, analog channel and reference voltage)

