(O
N
(X
N
3

LecTies /2

/
Aoz i ﬁﬁ
— XIS The Fappy By STHM 0T

— e, O Jrmn cuss o Tt Gled

—Leerver 13 ('7722.%27)«!/7 W/t A 2T p

[l &

NN

oLeonp e (o LIWVE CAL) — Bor 1T Ly

T witl ADp pERICE Novrl — UPUTE (oav.

/ 9 71 T~ /')« / /.lf‘
) VS FREPN = o — /I S0
2Y e OF ofF/ce: Al akl

J5 Fbo JMVE OTNERZ. | OuoTSruowe

CABS (4;15’/@,45:) 7 SAbocD - Cagd¢

ME AHAP TO LET e foo e CRTIXC
(OF Yov NAVE. poor 5 SO0 ALREAD)

[CAw BE FLEVIBLE, BVT Yo AT A7T0H,
ALl Prgoked LIRS (LABo, LAB), LAZ2)
Y0 FEcEwe A PSws GEADE!

— 4B 3 | EATRA Ponl LR, T

N
"(
N
N\
\:{
W

ECE2049: Homework 5

Content: Lectures 10-11
Due: Thursday, June 23 by 11:59pm EDT

Submission notes:

For full credit, please show your work and denote your answers with a circle or a box.

Always write or draw your diagrams neatly! We cannot be expected to GUESS what you meant to
write! Some problems (such as those involving code) must be typed to be graded—the others may be
handwritten (neatly!) or typed.

Points for each problem are as indicated. Some portions of problems are marked as “BONUS,” which
count as extra credit.

1. (5 pts) Please complete the “Interim Course Survey” located in the Quizzes section of our course page on
Canvas, located here: https://canvas.wpi.edu/courses/35856/quizzes/48849

This survey is designed to help me plan the remainder of term. Your feedback is extremely useful for
helping me accommodate everyone and create a comfortable learning environment. Your responses are
anonymous, unless you choose to include your contact information—otherwise, Canvas will just
record that you completed the survey.

2. (10 pts) For a certain application, Timer A2 has been configured as shown below with the goal of

creating periodic interrupts every 0.005 seconds.

—_—

{

void runtimerA2 (void)

TA2CTL = TASSEL 2 | MC 1 | ID 2; ?ﬁ/ = 0.0[9 (
TA2CCRO =_1309; NY rJ—

TA2CCTLO = CCIE; // Enable timer A2 interrupt

a. ~Assuming that ACLK, SMCLK, and MCLK are running at their default settings, what is the
exact time between interrupts, t;yr? (Your answer should be close to 0.005 sec.)

b. If the system clock and timer settings from this problem are used to implement some kind of
time-critical system, how long until the time count is off by 0.005 seconds? Will it be fast or
slow? How do you know?

c. Write an interrupt service routine for Timer A2 for this application, using a single level of leap
counting to keep the display accurate for longer.

ECE2049-E22 Page 1 of 1

‘ ‘ cre‘ating‘peric‘)dic i‘llterr‘upts e‘:very‘ 0.00‘5 sec‘onds‘. ‘ ‘
_——
void runtimerA2 (void)
{
peen s mgme e oa) opoth
| TA2CCTLO = CCIE; // Enable timer A2 interrupt | /1]//) /% 0/ 5
- /
\ _ Dipe BY Y
PCLK == 2276F fp—
SHMCLE =7 joy8sts iy
A T 00)C MAL Cury |
.// U//q/’ [/’/—\\h_,_.
/G IR A
L‘/ﬁ’ (SNelLx / {}
L ~—— T
/7)”l "A(-ry;q = —/)Z;‘Zj + I v 506’7661; 7Zt g;)/d/
)AL ~ —
‘ [1oYPE 76/ —
L ! /1l /(
%'“/ P> = O-005)
/ Iz T
AcYpL & R EPRTE0 =D [HACT

\\\

G.0b8, = (}3 ivay) fT'(—:) T hy . REPoLTBY
o / =) u/IVJ/ /QC};IAL / L
) </ /
(.00%)_ :-'/ (X vt \/&ODS’/ G045 713y)/
X = [€22.74 3)20 uiipewrs
~ 7 N \ \
)~ —~ \ — —
E22 (wrppent) .00,/) Z\7 /o,
L / ///U// L//-_/—J

T =2 Cup

Q
O
~
D
X
%!

T = O
LEAPCAT = O
/S S
N\
£ (LENS _ewT & | £)5
TINE L+,
CAP. Cure)
—LLL !
LAY - T =

4

N
™
3
N
(\%
™~

N DoV Cal

=07 Y

4

77

DN

A

V

o

(-

(s

M A@/

1 4 /

3. (5 pts) Consider the following scenario involving a configuration for a timer with periodic interrupts.

a. What is the smallest time interval, t;yr, that you could theoretically measure with Timer A2

using ACLK or SMCLK, assuming the default clock settings?

b. Isita good idea to set the timer to that interval? Speculate on why or why not. (We will discuss
the details in class—you don't need to have a correct answer, just think about it.)

ik

/S

—

X

A

 cchd

- C>’

[0l <

t M,

01 ¢S76 s

= J
[T (R Of _——— .
(miLk, /94’;';;_.)t -L A 7. 07 40 4

N
—=>

A0)

A

JNVITELLY,

)97

Lvpny Clock CrelE]
//"7'%&\ “/74‘?’%
— W) Wikt Movpe eeT 1o
PV BechIet Te: fJiwpy

S
g
N
?\V\

A E

220

VatlLab.

ECE2049-E22 9-1

Module 9. Analog to Digital Conversion
Topics
e More on timers

e Starting Analog to Digital Conversion

Warmup: Analyzing a timer configuration

1. What is the period of the timer with the configuration below? (How often are interrupts
generated?)

void runtimerA2 (void)

{ 7
TA2CTL = TASSEL 2 | MC_1 | ID 3; /jﬂ(?
TA2CCRO = 32767; T LA
TA2CCTLO = CCIE; // Enable timer A2 interrupt 7—)/1’ Ll-}

}

9

2. The ISR for the timer above increments a counter called timer on each interrupt. If
timer = 2447, how much time has elapsed since the timer was started?

)// _ 9 7//4,&4':[_,2 =2 ShCLK
wr MC— | =2 vp Mok

). 3 =2 DWDE BY £
K owr® 32767 + | _ MAx_cury)

[010 <76 /¢ W

7 FINR LUPsep ML
2 ¥47 sy X U ebrentd)

/2W/7 //VquﬂL!)C;(A%Nw/f7

6/1. 750

ECE2049-E22 9-2

Analog to Digital Converters (ADCs)
Analog to Digital Converters (ADCs), or A/D converters, have become ubiquitous in embedded
applications.
e ADCsreturn a binag code to represent a measured voltage from within a fixed range of
voltages
o Small voltages return "low valued" codes, greater voltages return "larger" codes

/})-/—I—‘Z.Zl/ %ﬁ}_{uﬂ[g’[féj}fwé
SR CoVIw /oLf
‘0

0V D) 42 oV
For example, within the range of 0-3V, a 10-bit ADC could return codes like these:
00 0000 0000b = 000h = 0d => oV

01 1111 1111b 5120 =2 .5V 2/6_ Joz! Poct)BLE
11 1111 2311b 1023d ::7;'0[/) Uﬂbfg

o Itis very likely that you will use an ADC when you take ECE2799, do your MQP, or
work on a robotics project!

== (s,

1FFh

3FFh

FH l/ A Rt /D DI67RAL Copel Fﬂ&z T
T J o/
i r%/r["'j [/60 /0(,/0/, /“’/ 101, yr8, /
/
SP/@BLM?
. O6o = %@',‘_
= Pt
v l/ﬂé / IPPVT o TGk
%u 1 %&:‘F—, P
Coor [fprve = froom w (2% -/
1 / IJ/(L‘T'-I‘ ’M@T':-
T k= 7= 4
UERE k= & oF B
™ N ApC
T v : N Y,
""7(/65,472»3 LINEIR. A
IR LOLT ol &8 BETwer LpEs //\74&:,

ECE2049-E20 9-4

Realities of ADCs

No ADC is perfect-there will always be some error between the analog voltage and the one
measured with the ADC. There are several reasons for this, including:

 Output codes are "quantized": the closest ADC code will differ somewhat from the
analog voltage, depending on the resolution

» Our MSP430 uses a "sample and hold" type of ADC, which means the analog circuitry

that samples the waveform can "hold" the analog value at a certain level—this means that
it might miss certain changes in the waveform

» Transients from switching circuitry inside the ADC can affect the output code, which may
introduce some non-linearity in the output values COANT 70

When sampling at faster rates, these effects tend to get worse!

We will not deal with these issues much in this class, but it is important to know they exist.
ADCs on Microcontrollers
Small ADC:s like the 12-bit "Sample and Hold" type ADC on our MSP430 often come standard

on small microcontrollers. o, /vl Sy ip- 2C17

Are they any good?
J(| MDD oF.
These ADCs are best suited to measuring from sensors with low to moderate data rates with a
ixed dynamic range. Some examples:
= ﬁccheMMEﬂ;ﬂ‘ see

These small ADCs are likely not suitable for applications with higher data rates or a larger

dynamic range. Examples: (ﬁ & UAL) ry /4
’/40/9/0 Procesivs /6 B)7% @0 qy//L SAAPLES

As always, however, the application will determine the type of ADC you need! fec
What is dynamic range, anyw: ayl; (7 7///‘&_)

ECE2049-E22 9-3

ADC Concepts

When an analog signal is “read” by an ADC, the analog value of the signal is sampled to obtain
a k-bit digital representation of that value at that time.

—>

ECE2049-E22 9-5

Key Concepts for using Analog to Digital Converters

(or performing any measurements)

1. Full Scale Range (FSR): The maximum range of analog values that can be represented
This 1s defined as the total range of voltages between Vzer+ and Vrer-

W

7; VEﬁFfr |/~ cope /f 5 ﬁ Z/:F %’P’
—1 M/MC K

1S cLk

FSE= 200

Ui Z% ‘
I e 77

2. Resolution (for a single bit): The smallest change in value that can be measured
You can think of this as the "value of1bit"in an output code.

ﬁﬂfowr/w ~ A% Y K. it porbsr oF

25 Bire v ADC
Fx. 2 OF ZM / 2V
g RES > 3/2; 7 ;7
2)2_ 2 i
For copr 70 1) DIFEiewcE)5 owr wwIT O
(9] ReSoL vriopn 7 = ')dl,y
3. Dynamic range: Ratio of largest to smallest values that can be measured 2/

The dynamic range is usually expressed in decibels (dB), and can be computed as follows:

DR 204y, (")

15(/ Fot - Apc 12, K2

=224, [z")
= 77.2/d8

ECE2049-E22 9-6

Thinking about data representations

As an embedded systems engineer, you get to decide how to make your sensors interface
with the gC! Knowing how your external sensor works and how to "map" it to the ADC
you're u’sing is as critical as knowing how to make the MSP430 read the value!

Here’s a way to think about how sensor measurements are represented as digital values:

D) s1maL
Stwion Aot ,)
7 /) Sc—7 roaumn " Dot
Cine)7 /0 PC o) C
Sepron Vet 7/L/m
£ 0 ADC)2
g O-2.5V

- 7;%/9417»,47'//45 [”C> Y Z, a[;l'za/)
_ Cvepenr (A) - Ceol — FFF

~ Alctatppeprsn (-) Vit M‘U e’
VTS B)TS
— BN I0C

Sewsorn_
W/é/ﬁ0 & ~ pj(/UL
Sewson_ Copi
ﬂp@ }7/ 7

— N Cont FEokm)T
~ OV Sope juiknfiCE

ECE2049-E22 9-7

Example: Current sensor

You can make a simple digital current meter by measuring the voltage across a small sensing
resistor.

Can we use the ADC12 on the MSP430 to measure current in the range .9_—12'2 with ImA
accuracy? How about to 0.1mA accuracy? /

-

~

For now, let's assume we have an FSR of 2.5V. s

¥ " 2.5V
- G ~2.5/
P
[2,(&/‘15 @ __/A

LoAD,

q S
& A

e~ — e j ’lﬂ(/CM’A}LLD
’/V’“ C’/ﬂw/T _.W A7 czécwm/

D g

Ciw WE gpr / A Accveacy [in AOC Vid
Efes o J"M S gitporion)

/ 0~ 0;4

Covrr we 657 | aA xccuféﬂcy/
.

394
e S

. R
., o — 7B Jfinerk 466”“6}/; WoVLD NEED TE

S1EAonE Qypn. [TULLE gANeE, O jzv” A R
DC.,

%&z@v _OF /;(./76 /2 tngrior. 7A

Vee ;/3-3/
. e (1SV o 2.5V
{ / gt Vm{; av i lg/ 11@"/7/&-
..-—-Ag_ :
: Ry & gF— UK
g 7 SAr. Cor&
L AT
" SN

ol g0 o-zg)/ |— - |
/A7 o-33/ _/-‘;)
2\A10 o-Luw (—3 Resvrs
[Go
t ' Nere
15} 1 !
MEMORy COMTRIL JE feor) OUTHA
(merix) Res1 088 (nethy)

Vi
CN/W 4l @A)F/g' /?

ECE2049-E20 9-8

On the MSP430: Using the ADC12
Our MSP430 provides includes a 12-bit ADC, called the ADC12.

About the ADC12
e 16 channel, 12-bit sample-and-hold ADC
e Maximum sample rate of 200k samples/second
12 External analog inputs A0-A7, A12-A15; shared with Digital 1/O ports 6 and 7
» You configure and use them by setting values in various control registers

Overall ADC operation
An ADC's job is to perform a\c%sionby sampling an analog voltage into a digital value.

The ADC12 has the following components:
e Inputs from analog input channels
o Core unit to perform conversions
o Core configuration registers that configure how the conversion happens
o Can define multiple channels to perform multiple conversions at once
o Memory control registers that configure how each channel should be converted
o Memory registers that store the conversion results for each channel

ADC12 Control and Data registers

You can find the ADC12 register definitions in the MSP430 User's Guide (Ch. 28).
(£21)

NEED 70 Resd/lop 11y Apcr/z
RECISTE. ConFreve ar; (o0s, BuT Yo
SHsvLD B Eas i w/ TRE CoweerrS
COF wnenwb W/ ADes/

ECE2049-E22

Core configuration registers
The ADC12 conversion core is configured using ADC12CTLO and ADC12CTLI1.

ADCI12CTLO controls the following options:
o Sample and Hold Time (ADC12SHT1x, ADC12SHTOx): Controls sampling period

e Multiple sample conversion method (ADC12MSC)

o Reference voltages (ADC12REF2_5V and ADC12REF_ON)
e« ADCI120N bit: Turns on the ADC12! (It's off by default!)

o Enable conversions (ADC12ENC): Must be set to 1 before ADC will perform
conversions! When set to 0, ADC can be configured.

o Start conversion (ADC12SC): Starts a conversion!
o Overflow/conversion time interrupt enables (ADC120VIE, ADCI12TVIE)

ADCI12CTL1 controls the following options:
o Conversion start address (ADC12STARTADDx)

o Sample and hold source select (ADC12SHS):

o Sample and hold pulse mode select (ADC12SHP): Always set this to 1
o Invert signal sample and hold (ADC12ISSH)

o ADCI2 clock divider (ADC12DIVx): Typically use 1

e« ADCI12 clock source select (ADCI12SSELX):

o Conversion mode select (ADC12CONSEQx): Can select single, multi-channel, or
repeated conversions

o ADC12 busy bit (ADC12BUSY)

9-9

ECE2049-E22 9-10

Results from each channel are stored in the low 12 bits of one 16 bit Conversion Memory
Register (ADC12MEMXx).

Each memory register has a corresponding Conversion Memory Control Register
(ADC12MCTLx).

Each ADC12MCTLx controls one channel on which a conversion can occur. The conversion
parameters for channel x is controlled by Memory Control Register x, and the result gets stored
in memory register X.

Each ADC12MCTLx controls the following options:
» Reference voltage select (ADC12SREFx): Important settings are as follows:

o Analog input channel select (ADC12INCH_x):

e End of Sequence (EOS): Set to 1 if this channel is the end of a sequence of channels.

Used for multi-channel conversions.

So, as a programmer, what do you need to use the ADC12?

ECE2049-E20

— ADC configuration: Key steps

Step 0: Disable the ADC for configuration

» Before you can modify any ADC12 register settings, conversions must be disabled by
setting ADC12ENC = 0.

Step 1: Select ADC core behavior (ADC12CTL0 and ADC12CTL1)
Set clock source and divider

Configure sample and hold behavior p EFAULTS.

Select trigger source (ADC12SHS)

o Reference voltages

@”M&O/M% SO %@UF.-,!
g Vc(_: ?3/

-5V VTR REFERHICE

G "
- - 251 T Yy

V,ecf- = o/

Step 2: Select conversion mode for your application
» Configure using ADC12CONSEQx in ADC12CTLI1 register
o There are four possible conversion modes:

Table 28-2. Conversion Mode Summary

9-11

ADC12CONSEQx Mode Operation
—9 00 Single-channel single-conversion A single channel is converted once.
.——7 01 Seqguence-of-channels (autoscan) A sequence of channels is converted once.
/ 10 Repeat-single-channel A single channel is converted repeatedly.
11 Repeat-sequence-of-channels A sequence of channels is converted repeatedly.

{repeated autoscan}

Step 3: Select input channel(s)
o What analog inputs do we need to read?
o Configure using ADCI12INCHx in ADC12MCTLx registers

~ Seweer wmey PIP OR miz GAIF 70 v

AOAT, A2-us aee, Mpripe”
OV Edrspupc pyps

— Zer Nezp Lo

Jg‘;’ 7//‘/ /:ﬂ/L' /Cﬂ/UL/’/m(J A0t

ECE2049-E20 9-12

 Analog inputs AO-A7 and A12-A15 are external analog inputs—these are multiplexed
with Digital I/O pins on Port 6 and Port 7!

o To use them, we need to configure the digital I/O pins for function mode!
Ex. P6SEL | BIT7|BITé6;

o Analog inputs 8, 9, 11 are connected to the various on-chip reference voltages—you can
use these to monitor the "health" of the microcontroller
* Input channel 10 is connected to an internal temperature sensor (ADC12INCH_10)

Step 4: Enable ADC interrupts, if desired (ADC12IE register)

» Using interrup{s is NOT required, but useful if you are doing repeated measurements
e Also need to write ISR

Step 5: Enable ADC and start conversions
 Need to re-enable ADC so it will perform conversions (opposite of step 0)
e Start conversion process by setting ADC12SC.

o If not using interrupts, need to poll ADC12BUSY bit in ADC12CTL1 until conversion
o~ has finished!

P Convinsiols TAKE ! G zsfo/w)

Example: Current measurement sensor

You can make a simple digital current meter by measuring the voltage across a small sensing

resistor. Can we use the ADC12 on the MSP430 to measure current in the range 0—1A with TmA
accuracy? (Yes!) How about to 0.1mA accuracy? (No!) > 33 /
Assume we have an FSR of 2.5V and the analog voltage is connected to input é?, @

0 = - o /)
What parameters do we need? / ’d 7 62 ¢

JNPUT e Ao Sew(

/?b):gxgwc[{l /:\5’5 !Z, 5'1/} ZQV /
\

™
THEre Exprpl _A ﬂ El'ﬂj oplor~ g /1})(& 7/

0-14 =7 3/ LS

ECE2049-E22 9-13

// Current sensor conversion example

void config adc(void) {
/* ***** Core configuration ***** */

// Reset REFMSTR to enable control of reference voltages by ADCI12
REFCTLO &= ~REFMSTR;

/*
* Initialize control register ADC12CTLO

* STHOx = 9 => 384 clock cycles; MSC = 0 => no multisample mode
* REF2 5V = 1 => Reference is 2.5V, REFON = 1 => Use internel reference generator
* ADC120N = 1 => Turn on ADC12
*/
ADC12CTLO = ADC12SHTO_ 9 | ADCI2REFON | ADC12REF2 5V | ADC120N;
/*
* Initialize control register ADC12CTL1
* STARTADDx = 0 => Start conversion at ADCI12MEMO
* SHSx = 0 => Conversion trigger: Start when ADC12SC is set to 1
* SHP = 1 => SAMPCON sourced from sampling timer (default)
* ISSH 0 => Input signal not inverted
* SSEL = 0 => ADCl2clock = ADC120SC (~5 MHz)
* DIVX = 0 => Divide ADCI12CLK by 1
* CONSEQx = 0 => Single channel, single conversion mode
*/

ADC12CTL1 = ADC12SHP;
/* ***** Channel configuration ***** */

// Set conversion memory control register ADC12MCTLO

// SREF = 001b => Voltage refs:

// EOS = 0 => End of sequence not set (not a multi-channel conversion, so ig-
nore)

ADC12MCTLO = ADCI12SREF 1 | ADC12INCH O;

// Set P6.0 to FUNCTION mode
// This connects the physical pin P6.0/A0 to the ADC input A0
P6SEL |= BITO;

// Enable the ADC. This means we are done configuring it,
// so we can start the conversion.
ADC12CTLO |= ADC12ENC;

ECE2049-E20 9-14

o unsigned int read adc(void) {
// Input voltage has range 0-2.5V, which corresponds to 0 to 1A.
unsigned int in value;

ADC12CTLO &= ~ADC12SC;
// Enable and start a single conversion
=== ADC12CTLO |= ADC12SC;

© O

// Wait for the conversion to finish by polling the busy bit
// The busy bit is automatically set to 0 when the conversion is done
while (ADC12CTL1 & ADC12BUSY) {
__no_operation(); // Could also just leave the loop empty

}
- N opr For Aee 30 B poye!

// Now that the conversion has completed, we can read the result

// from the memory register

in_value = ADC12MEMO & OxOFFF; // Keep only the low 12 bits

return in value; ﬂ:\ C;
; &r a

VALVE FROM OVTRIT fevs/frip

Now what do we do with the return value?

— VRAWVE * ‘ ol
/W —VRWVE T 27 Zo/ NI post Vs 74 /%442

SO
~ /o7 AP Conr AS Yy re "Dicipe porpin 2V

oy .
CODE = V/”] %; /ZI‘C__/)
; Vﬁé'f—'f */Zé;jy
Mz‘s“V 4

© /A A
730 = %/d (272_/) Y emxsg

2. E¥ 2.3~ 6

Vo= ety Aukes /-0

Wﬂj}u- V - 2.8

. ovr= Z:8(x)
Ze ﬁww Voussaee —> SerSon Vrorr<) = 25T
%u/’ 7 %f L. Y_Z:' AV (eR17E™ z@u&

L6667V = 2. 5. /'bészf‘”"‘) Y Sewsan
-~ / A BASeD gy Rr0a 00 ,;’4,9(,41%,‘/”/.

= 2.3

ECE2049-E20 9-15

Example: The internal temperature sensor
To use any sensor, you need to understand how the sensor output (in this case, voltage)
corresponds to the quantity it measures, which is documented by the designers.

Our MSP430 contains a built-in sensor to measure the internal chip temperature. It has a linear
mapping from voltage to temperature:

A typical temperature sensor transfer function is shown in Figure 28-11 . The transfer function shown in
Figure 28-11 is only an example~the device-specific data sheet contains the actual parameters for a
given device. When using the temperature sensor, the sample period must be greater than 30 ps. The
temperature sensor offset error can be large and may need to be calibrated for most applications.
Temperature calibration values are available for use in the TLV descriptors (see the device-specific data

sheet for locations). - C/,J V _(B\ 7& 6-6,.7/
7 e LINEAR. ERodTiON ok TEMP,

g o

by > %

g 0.800

g 0.750 7/: /’1)(7; B

g;_ 0.700

E

£ o650

'2 /v 4 >

I R
0.550

-40 -20 © 20 40 60 80 100 A")(/Aﬂ/?bc/ TANIS oprs”

Ambient Temperature - °C

-
Figure 28-11. Typical Temperature Sensor Transfer Function fJ/AS /4/'.} /7 s ”f)

To use the sensor, we need to read some calibration data from the device, which we use in the
computation for the resolution. This information is stored in the Tag-Length-Value Table (TLV
Table), which is a portion of flash memory that contains some device-specific settings and
constants—we need to read from the addresses specified in this table to get the calibration data.
For more information on how this works, see p. 102 of the datasheet.

According to the datasheet, the calibration data provided is based on a 1.5V reference.

ECE2049-E22 9-16

More ADC features

Multi-channel conversion

What if we wanted to read data from two sensors? Consider the following sensors:
e Our current sensor example from earlier (connected to input channel A0, 2.5V reference)
e A barometric pressure sensor (Input channel A4, 3.3V reference)

These sensors require different settings for reference voltages and inputs.

We could reconfigure the ADC every time we wanted to take a measurement, but this would be
annoying. Instead, the ADCI12 provides several different conversion modes to solve this
problem. We will discuss the most straightforward: multiple channel, single conversion mode.

To perform readings from two sensors, we will need to use two ADC12MEMXx registers, one for
each channel.

Like the previous examples, we need to:
e Configure the ADCI12 core, this time selecting multiple-channel, single conversion mode
e Configure one ADC12MEMXx register for each reading we want to perform with the
appropriate settings for each channel (ie, analog channel and reference voltage)

