
ECE2049-E22 10-1

Module 10. Operating Modes and More
Topics

• Revisiting interrupts
• Operating modes

ADC12 Interrupts
Our examples so far have used the ADC12SC bit to start conversions, and then we poll the
ADC12BUSY bit to see when a conversion is complete:

ADC12CTL0 |= ADC12SC;

while (ADC12CTL1 & ADC12BUSY) {
 __no_operation(); // Could just leave body of loop empty
}

in_value = ADC12MEM0 & 0x0FFF;

This is another form of busy-waiting, which is like swDelay:

• The CPU isn't doing any useful work–it's just sitting in a loop!
• While ADC conversions happen very quickly (<< 1 ms), the CPU executes faster, so we

do need to wait for a result

The main purpose of on-chip peripherals like the Timer and ADC is to remove burdens
from or provide services to the CPU.

ECE2049-E22 10-2

The solution to this is to use an Interrupt, an external signal sent by a peripheral requesting that
the CPU do something. Interrupts are hard-wired into certain peripherals. Fortunately for us, the
ADC12 can trigger interrupts.

On the ADC12, an interrupt can signal the end of a conversion, meaning that it is ready for the
CPU to read data from its memory registers.

Here is an example configuration with two channels:

ADC12CTL0 = ADC12SHT0_9 | ADC12REFON | ADC12ON | ADC12MSC;
ADC12CTL1 = ADC12SHP | ADC12CONSEQ_1;

// Here, we are performing conversions for two channels
ADC12MCTL0 = ADC12SREF_0 + ADC12INCH_5;
ADC12MCTL1 = ADC12SREF_1 + ADC12INCH_6 + ADC12EOS;

// Because we are converting for two channels, we want the interrupt
// to occur after BOTH conversions are complete, so we enable the
// interrupt for MEM1.
ADC12IE = BIT1;

__enable_interrupt(); // Globally enable interrupts

ADC12CTL0 |= ADC12SC + ADC12ENC; // Enable ADC and start conversion

What should the ISR do? It's triggered when a conversion is finished, so it just needs to read the
memory registers!

// Global variables for storing data
// (could also store into an array!)
volatile unsigned int in_value1, in_value2;

#pragma vector=ADC12_VECTOR
__interrupt void ADC12_ISR(void)
{

 // Move the results for both channels into global variables
 in_value1 = ADC12MEM0 & 0x0FFF;
 in_value2 = ADC12MEM1 & 0x0FFF;

}

ECE2049-E22 10-3

“Scheduling” ADC measurements
It's also possible to have the ADC perform conversions automatically. An easier option is to
trigger ADC conversions from a timer and use ADC interrupts to read the results.

// NOTE: this example assumes the timer and ADC have already been configured.

volatile unsigned int in_value1, in_value2;

// Timer A2 ISR
#pragma vector=TIMER2_A0_VECTOR
__interrupt void Timer_A2_ISR(void)
{
 timer++;

 ADC12CTL0 |= ADC12SC;
}

// ADC 12 ISR
#pragma vector=ADC12_VECTOR
__interrupt void ADC12_ISR(void)
{
 in_value1 = ADC12MEM0 & 0x0FFF;
 // . . .
}

void main(void)
{
 setup_everything();
 _enable_interrupt();

 while(1){
 do_something_with_adc_values(in_value1, in_value2);
 }
}

Here, we now have two ISRs, one for the ADC, and one for the timer. Thus, our main program
can simply use in_value1 and in_value2 without needing to explicitly start conversions.

ECE2049-E22 10-4

Polling versus Interrupts Revisited
So far most of our code has relied heavily on Polling. While we have been using the timer to
keep track of fixed time intervals, our main functions are still busy-waiting in some form of
loop:

while (1)
{
 if (global_time_cnt > last_time)
 {
 take_ADC_meas();
 last_time = global_time_count;
 }
 button = checkButtons();
 . . .

 // Other task(s) can occur at different intervals
 if ((global_time_cnt % cnt_per_second) == 0)
 {
 toggleLED(LED2)
 displayHHMMSS(global_time_cnt);
 }
 . . .
}

This is not efficient: while it is waiting, the CPU is using precious energy to check if it needs to
do something!

ECE2049-E22 10-5

As an alternative, we can organize our code to schedule tasks to occur at specific “real” times,
and even assign priorities to tasks.
 --> We do this by implementing the Scheduler INSIDE Timer ISR!

// A simple task scheduler for the MSP430F5529
#pragma vector=TIMER2_A0_VECTOR
__interrupt void Timer_A2(void)
{
 // First priority: maintain time base
 global_time_cnt++;

 // Some of the app task(s) may execute every time slice
 take_ADC_meas();
 button = checkButtons();

 . . .

 // Other application task(s) at different intervals
 if ((global_time_cnt % cnt_per_second) == 0)
 {
 toggleLED(LED2)
 displayHHMMSS(global_time_cnt);
 }

}

Here, main() would consist of initialization followed by an “empty” loop:
void main()
{
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 init_sys(); // Initialize the MSP430
 setupButton(); // configure buttons
 setupADC(); // configure ADC

 . . .

 _enable_interrupt(); // Global Interrupt enable
 runTimerA2(); // Start scheduler

 // An empty forever loop!
 // All application tasks are scheduled and dispatched
 // from within TimerA2 ISR
 while(1)
 {
 __no_operation();
 }

ECE2049-E22 10-6

What are we assuming by organizing or scheduling our application's tasks like this?

There some very important assumptions here:

Remember the rule of interrupts!

• We can have multiple interrupt sources for different peripherals—we want to maintain
this behavior when scheduling tasks.

• By default, interrupts are disabled inside an ISR. Therefore, one interrupt cannot

normally interrupt another one, but we can change this behavior when we need it.

ECE2049-E22 10-7

Interrupt Priorities

ECE2049-E22 10-8

Operating Modes

What’s the advantage of scheduling tasks?

>>Our CPU doesn’t need to be running all the time!!

This means we can use the MSP430’s operating modes to save energy when not performing
tasks.

The MSP430F5529 has 6 Operating Modes:

 Active Mode => “Normally Active” = CPU is active, all enabled clocks are active

 Low Power Mode 0 => CPU, MCLK are disabled , SMCLK , ACLK are active

 Low Power Mode 1 => CPU, MCLK, DCO osc. are disabled , DC generator is
 disabled if the DCO is not used for MCLK or SMCLK in
 active mode, SMCLK, ACLK are active

 Low Power Mode 2 => CPU, MCLK, SMCLK, DCO osc. are disabled , DC
 generator remains enabled, ACLK is active

 Low Power Mode 3 => CPU, MCLK, SMCLK, DCO osc. are disabled , DC
 generator disabled, ACLK is active

 Low Power Mode 4 => CPU and all clocks disabled (RAM retention mode)

 Low Power Mode 4.5 => CPU and all clocks disabled (no RAM retention), PWR
 management off, Digital IO pin configuration retained

ECE2049-E22 10-9

Operating Mode Basics

>> Most embedded systems run on batteries

 -- Enter Low Power Mode to conserve batteries

On MSP430F5529 Low Power Modes are indicated/selected thru the CPUOFF,
 OSCOFF, SCG0, and SCG1 bits in the Status Register (SR)

Mode SCG0 SCG0 OCSOFF CPUOFF
Active 0 0 0 0
LPM0 0 0 0 1
LPM1 0 1 0 1
LPM2 1 0 0 1
LPM3 1 1 0 1
LPM4 1 1 1 1
LPM4.5
*

1 1 1 1

 *PMMREGOFF bit = 1, as well

Status Register Layout:

Reserved SCG1 SCG0 OSCOFF CPUOFF GIE N Z C

How do you enter a Low Power Mode?
Can set with the _BIS_SR() function:

 Ex: _BIS_SR(LPM3_bits) ; // set bits to enter LMP3

 _BIS_SR(LPM3_bits|GIE) ; // set bits to enter LMP3
 // and enable interrupts

ECE2049-E22 10-10

When to enter LPM and how do you exit?
 --> Ideally want to enter LPM whenever not executing tasks
 --> This is made simple if program is organized as a “Scheduler”

 --> Enter LPM after starting timer in main()

// A simple task scheduler for the MSP430F5529
#pragma vector=TIMER2_A0_VECTOR
__interrupt void Timer_A2(void)
{
 // First priority = maintain the time base
 global_time_cnt++;

 // Some app task(s) may execute every time slice
 take_ADC_meas();
 button =checkButtons();
 . . .

 // Other application task(s) execute less frequently
 if ((global_time_cnt % cnt_per_second) == 0)
 displayHHMMSS();

}

How do you exit LPM if CPU is OFF?

 >> INTERRUPTS!

When an interrupt is received from a certain source, the CPU automatically does the following:

1. Finishes its current (assembly) instruction
2. Saves Status Register (SR) and Program Counter (PC) to stack
3. Clears Status Register (set to 0)
4. Loads address of ISR that was triggered from Interrupt Vector Table (IVT), loads it into

PC
5. Execution continues in ISR
6.

Returning from an ISR restores the Status Register to its previous values meaning that
your program will automatically return to Low Power Mode when exiting the ISR!

ECE2049-E22 10-11

void main(void)
{
 WDTCTL = WDTPW | WDTHOLD;

 init_sys(); // initialize system
 _BIS_SR(GIE);

 . . .
 runtimerA2(); // task scheduler runs in Timer A2 ISR
 . . .
 _BIS_SR(LPM0_bits|GIE); // Enter low power mode
 // Arrival of timer interrupt will cause MSP430 to exit low
 // power mode and enable it to execute all tasks within the
 // Timer A2 ISR

 while(1) {
 // Main program loop does nothing!
 }

}

Which LPM you enter depends on which clocks you are using for your scheduling Timer.

 -- Also, on how quickly you need other clocks

>> Low Power Modes are great in practice, but can make debugging painful!
 -- It’s simple so add it last when debugging is complete
 -- Then test to see if '430 is waking and executing tasks properly

ECE2049-E22 10-12

Computing Power Usage: Example

An MSP430F5529 is being powered by a Duracell 2/3A LiMnO2 battery, which has a nominal
voltage of 3V and a listed capacity of 1550 mAh.

The MSP430F5529 is running an application that is in Active Mode for 5.6 % of the time, in
LPM0 for 16.7% of the time, and in LPM4 for the rest of the time.
How long can the application run using this battery?

