ECE2049-E22 10-1

Module 10. Operating Modes and More
Topics
e Revisiting interrupts
e Operating modes

ADC12 Interrupts

Our examples so far have used the apc12sc bit to start conversions, and then we poll the
ADC12BUSY bit to see when a conversion is complete:

ADCI12CTLO |= ADC12SC;

while (ADC12CTL1 & ADC12BUSY) {
__no_operation(); // Could just leave body of loop empty

}

in value = ADCI12MEMO & OxOFFF;

This is another form of busy-waiting, which is like swbelay:
o The CPU isn't doing any useful work—it's just sitting in a loop!
o While ADC conversions happen very quickly (<< 1 ms), the CPU executes faster, so we
do need to wait for a result

The main purpose of on-chip peripherals like the Timer and ADC is to remove burdens
from or provide services to the CPU.

ECE2049-E22 10-2

The solution to this is to use an Interrupt, an external signal sent by a peripheral requesting that
the CPU do something. Interrupts are hard-wired into certain peripherals. Fortunately for us, the
ADCI12 can trigger interrupts.

On the ADC12, an interrupt can signal the end of a conversion, meaning that it is ready for the
CPU to read data from its memory registers.

Here is an example configuration with two channels:

ADC12CTLO = ADC12SHTO 9 | ADCI2REFON | ADC120N | ADCI12MSC;
ADC12CTL1 = ADC12SHP | ADC12CONSEQ 1;

// Here, we are performing conversions for two channels
ADC12MCTLO ADC12SREF 0 + ADCI1Z2INCH 5;
ADC12MCTL1 = ADCI2SREF 1 + ADC12INCH 6 + ADC1Z2EOS;

// Because we are converting for two channels, we want the interrupt
// to occur after BOTH conversions are complete, so we enable the

// interrupt for MEMI.

ADC12IE = BIT1;

__enable interrupt(); // Globally enable interrupts

ADC12CTLO |= ADC12SC + ADCI12ENC; // Enable ADC and start conversion

What should the ISR do? It's triggered when a conversion is finished, so it just needs to read the
memory registers!

// Global variables for storing data
// (could also store into an array!)
volatile unsigned int in valuel, in valueZ2;

fpragma vector=ADC12 VECTOR
__interrupt void ADC12 ISR (void)
{

// Move the results for both channels into global variables
in valuel = ADC12MEMO & OxOFFF;
in value2 ADC12MEM1 & OxOFFF;

ECE2049-E22 10-3

“Scheduling” ADC measurements
It's also possible to have the ADC perform conversions automatically. An easier option is to
trigger ADC conversions from a timer and use ADC interrupts to read the results.

// NOTE: this example assumes the timer and ADC have already been configured.

volatile unsigned int in valuel, in valueZ2;

// Timer A2 ISR

#pragma vector=TIMER2 A0 _VECTOR
__interrupt void Timer A2 ISR(void)
{

timer++;

ADC12CTLO |= ADC12SC;
}

// ADC 12 ISR
#pragma vector=ADC1l2 VECTOR
__interrupt void ADCIZ_ISR(void)
{
in valuel = ADC12MEMO & OxOFFF;
//
}

void main (void)

{
setup_everything();
_enable interrupt();

while (1) {
do_something with adc values (in valuel, in value2);

}

Here, we now have two ISRs, one for the ADC, and one for the timer. Thus, our main program
can simply use in valuel and in value2 without needing to explicitly start conversions.

ECE2049-E22 10-4

Polling versus Interrupts Revisited

So far most of our code has relied heavily on Polling. While we have been using the timer to
keep track of fixed time intervals, our main functions are still busy-waiting in some form of
loop:

while (1)
{ if (global time cnt > last time)
{ take ADC meas();
last time = global time count;
éutton = checkButtons();

// Other task(s) can occur at different intervals
if ((global time cnt % cnt per second) == 0)
{
togglelLED (LED2)
displayHHMMSS (global time cnt);

This is not efficient: while it is waiting, the CPU is using precious energy to check if it needs to
do something!

ECE2049-E22

10-5

As an alternative, we can organize our code to schedule tasks to occur at specific “real” times,

and even assign priorities to tasks.
--> We do this by implementing the Scheduler INSIDE Timer ISR!

// A simple task scheduler for the MSP430F5529
#pragma vector=TIMER2 A0 VECTOR
__interrupt void Timer A2 (void)
{
// First priority: maintain time base
global time cnt++;

// Some of the app task(s) may execute every time slice
take ADC meas();
button = checkButtons{();

// Other application task(s) at different intervals
if ((global time cnt % cnt per second) == 0)
{

toggleLED (LED2)

displayHHMMSS (global time cnt);

Here, main() would consist of initialization followed by an “empty” loop:

void main ()

{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
init sys(); // Initialize the MSP430
setupButton () ; // configure buttons
setupADC () ; // configure ADC

_enable interrupt(); // Global Interrupt enable
runTimerA2 () ; // Start scheduler

// An empty forever loop!
// All application tasks are scheduled and dispatched
// from within TimerA2 ISR
while (1)
{
__no_operation();

}

ECE2049-E22 10-6

What are we assuming by organizing or scheduling our application's tasks like this?

There some very important assumptions here:

Remember the rule of interrupts!
e We can have multiple interrupt sources for different peripherals—we want to maintain
this behavior when scheduling tasks.

e By default, interrupts are disabled inside an ISR. Therefore, one interrupt cannot
normally interrupt another one, but we can change this behavior when we need it.

ECE2049-E22

Interrupt Priorities

Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range OFFFFh to OFF80h. The

vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 4. Interrupt Sources, Flags, and Vectors

SYSTEM WORD
INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT ADDRESS | PRIORITY
System Reset
Power-Up
External Reset (ni2) i
Watchdog Timeout Password WDTIFG, KEYV (SYSRSTIV) Reset OFFFEh 63, highest
Violation
Flash Memory Password Violation
SVS;EN’;’MNM' SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
Vacant Memory Access VLRLIFG, VLRHIFG, VMAIFG, JI’*‘!BNIFG, (Non)maskable OFFFCh 62
{
UTAG Mailbox JMBOUTIFG (SYSSNIV)
User NMI
NMI NMIIFG, OFIFG, ACCVIFG, BUSIFG
Oscillator Fault (SYSUNIV)(D@ (Non)maskable OFFFAR 61
Flash Memory Access Violation
Comp_B Comparator B interrupt flags (CBIV)("3) Maskable OFFF8h 60
TBO TBOCCRO CCIFGD®) Maskable OFFF6h 59
TBOCCR1 CCIFG1 to TBOCCR6 CCIFGS,
TBO TBOIFG (TBOIV)(@) Maskable OFFF4h 58
Watchdog Timﬁ[ﬁ’z'"tewa' Timer WDTIFG Maskable OFFF2h 57
USCI_AQ Receive or Transmit UCAORXIFG, UCAOTXIFG (UCAQIV)ME) Maskable OFFFOh 56
USCI_BO Receive or Transmit UCBORXIFG, UCBOTXIFG (UCBOIV)(ME3) Maskable OFFEEh 55
ADC12_A ADC12IFGD to ADC12IFG15 (ADC121v){1 34 Maskable OFFECh 54
TAO TAOCCRO CCIFGD® Maskable OFFEAh 53
TAOCCR1 CCIFG1 to TAOCCR4 CCIFG4,
TAO TAOIFG (TAOIV)E) Maskable OFFES8h 52
USB_UBM USB interrupts (USBIV){1(3) Maskable OFFESh 51
DMA DMAOIFG, DMA1IFG, DMA2IFG (DMAIV)!"® Maskable OFFE4h 50
TA1 TA1CCRO CCIFGD®™ Maskable OFFE2h 49
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1 TATIEG (TA1IV)E) Maskable OFFEOh 48
/O Port P1 P1IFG.0 to P1IFG.7 (P1IV)(NE) Maskable OFFDEh 47
USCI_A1 Receive or Transmit UCA1TRXIFG, UCA1TXIFG (UCA11IV)™M®) Maskable OFFDCh 46
USCI_B1 Receive or Transmit UCB1RXIFG, UCB1TXIFG (UCB1IVv)(ME) Maskable OFFDAh 45
TA2 TA2CCRO CCIFGD®™ Maskable OFFD8h 44
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,
TA2 TA2IFG (TAZV)E) Maskable OFFD6h 43
10 Port P2 P2IFG.0 to P2IFG.7 (P21v) Maskable OFFD4h 42
RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RTC_A RTOPSIFG, RT1PSIFG (RTCIV)(1@) Maskable OFFD2h 41
OFFDOh 40
Reserved Reserved®! : :
OFF80h 0, lowest

(1) Multiple source flags

(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

(3) Interrupt flags are located in the module.
(4) Only on devices with ADC, otherwise reserved.
(5) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain

compatibility with other devices, it is recommended to reserve these locations.

10-7

ECE2049-E22 10-8

Operating Modes

What’s the advantage of scheduling tasks?
>>Qur CPU doesn’t need to be running all the time!!

This means we can use the MSP430’s operating modes to save energy when not performing
tasks.

The MSP430F5529 has 6 Operating Modes:

Active Mode => “Normally Active” = CPU is active, all enabled clocks are active

Low Power Mode 0 => CPU, MCLK are disabled , SMCLK , ACLK are active

Low Power Mode 1 => CPU, MCLK, DCO osc. are disabled , DC generator is
disabled if the DCO is not used for MCLK or SMCLK in
active mode, SMCLK, ACLK are active

Low Power Mode 2 => CPU, MCLK, SMCLK, DCO osc. are disabled , DC
generator remains enabled, ACLK is active

Low Power Mode 3 => CPU, MCLK, SMCLK, DCO osc. are disabled , DC
generator disabled, ACLK is active

Low Power Mode 4 => CPU and all clocks disabled (RAM retention mode)

Low Power Mode 4.5 => CPU and all clocks disabled (no RAM retention), PWR
management off, Digital 1O pin configuration retained

ECE2049-E22 10-9

Operating Mode Basics

>> Most embedded systems run on batteries

-- Enter Low Power Mode to conserve batteries

On MSP430F5529 Low Power Modes are indicated/selected thru the CPUOFF,
OSCOFF, SCGO, and SCG1 bits in the Status Register (SR)

Mode SCGO0 SCGO |OCSOFF CPUOFF
Active |0 0 0 0

LPMO |0 0 0 1

LPM1 |0 1 0 1

LPM2 |1 0 0 1

LPM3 |1 1 0 1

LPM4 |1 1 1 1

LPM4.5 |1 1 1 1

*

*PMMREGOFF bit =1, as well

Status Register Layout:

Reserved SCG1 |SCGO |OSCOFF |CPUOFF |GIE |N Z C

How do you enter a Low Power Mode?
Can set with the BIS Sr() function:

Ex: BIS SR(LPM3 bits) ; // set bits to enter LMP3

_BIS SR(LPM3 bits|GIE) ; // set bits to enter LMP3
// and enable interrupts

ECE2049-E22 10-10

When to enter LPM and how do you exit?
--> Ideally want to enter LPM whenever not executing tasks
--> This is made simple if program is organized as a “Scheduler”

--> Enter LPM after starting timer in main ()

// A simple task scheduler for the MSP430F5529
#pragma vector=TIMER2 A0 VECTOR
__interrupt void Timer A2 (void)
{
// First priority = maintain the time base
global time cnt++;

// Some app task(s) may execute every time slice
take ADC meas();
button =checkButtons{();

// Other application task(s) execute less frequently

o

if ((global time cnt % cnt per second) == 0)
displayHHMMSS () ;

How do you exit LPM if CPU is OFF?
>> INTERRUPTS!

When an interrupt is received from a certain source, the CPU automatically does the following:
1. Finishes its current (assembly) instruction
2. Saves Status Register (SR) and Program Counter (PC) to stack
3. Clears Status Register (set to 0)
4. Loads address of ISR that was triggered from Interrupt Vector Table (IVT), loads it into
PC
Execution continues in ISR

(94}

Returning from an ISR restores the Status Register to its previous values meaning that
your program will automatically return to Low Power Mode when exiting the ISR!

ECE2049-E22 10-11

volid main (void)
{
WDTCTL = WDTPW | WDTHOLD;

init sys(); // initialize system
_BIS SR(GIE);

runtimerA2 () ; // task scheduler runs in Timer A2 ISR
_BIS SR(LPMO _bits|GIE); // Enter low power mode

// Brrival of timer interrupt will cause MSP430 to exit low
// power mode and enable it to execute all tasks within the

// Timer A2 ISR
while (1) {
// Main program loop does nothing!

}

Which LPM you enter depends on which clocks you are using for your scheduling Timer.

-- Also, on how quickly you need other clocks

>> Low Power Modes are great in practice, but can make debugging painful!
-- It’s simple so add it last when debugging is complete
-- Then test to see if '430 is waking and executing tasks properly

ECE2049-E22 10-12

Computing Power Usage: Example

An MSP430F5529 is being powered by a Duracell 2/3A LiMnO; battery, which has a nominal
voltage of 3V and a listed capacity of 1550 mAh.

The MSP430F5529 is running an application that is in Active Mode for 5.6 % of the time, in
LPMO for 16.7% of the time, and in LPM4 for the rest of the time.
How long can the application run using this battery?

