
ECE2049-E22  2-1 

Module 2. Data Representations & C Programming Basics 
 

Topics for Today 
• More on data representations 
• C programming basics 

 

Last Time 
• Introduction and Policies 
• Data representations for integers 

 
Warmup:  How many bits are in a byte? 
 
  



ECE2049-E22  2-2 

So how are variables actually stored? 
 
Each datatype has a specific representation, which depends on the compiler and the architecture.  
 
For the MSP430 architecture, the standard datatypes are defined as follows:  
int a;           // 16-bit two's-complement signed integer (2 bytes) 
unsigned int b;  // 16-bit unsigned integer (2 bytes) 
long int c;      // 32-bit signed integer (two's complement) (4 bytes) 
char d;          // 8-bit unsigned integer (1 byte) 
float e;         // 32-bit IEEE754 single-precision floating point value (4 bytes) 
double f;        // 64-bit IEEE754 double-precision floating point value (8 bytes) 

 
Note that the types char, float, and double have the same size on all architectures–these are part 
of the C standard.   
 
 
Important: The size and type of a variable define the range of values they can represent! 

• The value of a variable CANNOT exceed the fixed size of the variable 
• Variables will "overflow" or "roll over" if the value exceeds the variable size! 

 
Example: a char has a size of 8 bits (or one byte), and thus can hold values from  
0 to 28 - 1 = 255.  
What happens if we try to do the following?  
char c = 253; 
char a, h; 
 
for(a = 0; a < 4; a ++) { 
   h = c + a; 
} 
// As we run this: 
// a = 0, h = 253 
// a = 1, h = 254 
// a = 2, h = 255 
// a = 3, h = 0 <--- Rollover! 
 

 
This is a very important takeaway about datatypes–you always need to make sure your 

datatypes are appropriately sized for your application! 
  



ECE2049-E22  2-3 

Don't like how ints are different sizes on different architectures? 
 
Yeah, me neither. And neither did the people who wrote later C standards. If you include 
stdint.h, you can use datatypes that look like these:  
 
#include <stdint.h> 
 
uint8_t  a;    // Unsigned, 8 bit integer (aka char) 
uint16_t b;    // Unsigned 16-bit integer (aka unsigned int on the MSP430) 
int16_t c;    // Signed 16-bit (2's comp) integer 
uint32_t d;    // Unsigned 32-bit integer 
int32_t e;     // Signed 32-bit integer (2's comp) 
// Similar types exist for 64 bit integers, and 128-bit on some 
architectures... 

 
You are welcome to use these in your labs! 
 
 
Recall:  Characters 
One common format for representing characters is ASCII (American Standard Code for 
Information Interchange), which defines a table of binary codes that represent various 
characters.  
 
Example: in ASCII, the character the decimal value 68 (or 44h), represents the character 'D'.  
 
In C, we can represent enter ASCII characters using 'single quotes', like so:  
char a = 'D'; // Assigning c to the character value of 'D' 
 
 
// This is the same as writing  
char a = 68; 
// or 
char a = 0x44; 

 
Note: Other formats exists for representing different ranges of characters (like other alphabets, 
emoji, etc.). For information on this, see "Unicode".  



ECE2049-E22  2-4 

C Programming for Embedded Systems 
 

Rule #1: a program will always do exactly what you tell it to do! 
 
Here is an example of a simple C program:  
#include <stdlib.h> 
 
void main(void) { 
    float degF, degC, degK; 
    degF = 45.7; 
    degC = 5.0 * (degF - 32.0) / 9.0; 
    degK = degC + 273.15;     
} 

 
What does this code do? Is it correct? Is it useful? 
 
 

Terminology:  Compilation Process 
 
When you write a C program and build it, the compiler and linker are responsible for turning 
your code into machine instructions that the MSP430 can execute and arranging your variables, 
code, and definitions in the program's memory. The output of the compilation process is an 
executable that runs on the MSP430. 
 
Compiler:  
 
 
Linker:   
 
 
 
Why is it important to know these terms?  They will help you debug compilation problems! 
  



ECE2049-E22  2-5 

Basic data types 
Our MSP430 compiler users the following sizes for basic data types:  
int a;           // 16-bit two's-complement signed integer (2 bytes) 
unsigned int b;  // 16-bit unsigned integer (2 bytes) 
long int c;      // 32-bit signed integer (two's complement) (4 bytes) 
char d;          // 8-bit unsigned integer (1 byte) 
float e;         // 32-bit IEEE754 single-precision floating point value (4 bytes) 
double f;        // 64-bit IEEE754 double-precision floating point value (8 bytes) 

One of your first tasks when writing a program is creating variables of suitable size for your 
problem!  
 

Declaring variables 
int x;      // Reserve space for an int.  What is x's value? 
 
 
 
char z = 5; // Store 5 in 8-bit  
 
char array[10]; // Make space for 10 bytes 
int ints[5] = {1, 2, 3, 4, 5}; //Initializing an array 

 
 
 
 
 

Arithmetic Operators 
If you've seen C before, you have used these.  
 
Arithmetic Operators: + - * / % (% == Modulo, or the "Remainder operator" ) 
int x, y, z, u; 
float a; 
 
u = (x + z) * y / z; /* y / z is the integer part of the division—truncation!*/ 
 
z = 47; 
 
y = z / 10; 
 
 
x = z % 10;  

 
  



ECE2049-E22  2-6 

Casting is a way to change type of a variable. The compiler will add the appropriate routines to 
convert a variable from one representation to another for you.  
// Let's say we want to divide an integer to get a 
// decimal result? 
float a; 
int z = 47; 
 
a = ((float)z)/10.0; // a = 4.7 
 
 
 
 
 

 
Unary and assignment operators: += – += -= *= /=  
 
These operators are shorthand (also called "syntactic sugar") for other operations:  
i++;     // i = i + 1 
j--;     // j = j - 1 
i += 2;  // i = i + 2; 
k *= 4;  // k = k *4; 

(These operators are called unary because they only take a single argument (eg, a += 5), as opposed to 
binary operators, which use two arguments (eg. a + b) 
 
More shorthand with increment/decrement operators:  
i = 5; 
arr[i++] = 4;  
 
 
 

Be careful with these!  
 

Logical and Relational Operators 
Logical operators, such as produce a Boolean result (true or false).   
But how are Booleans represented in C?   
 
 
  



ECE2049-E22  2-7 

Relational Operators: >, >=, <, <=, ==, !  
 
These operators return a Boolean (1 or 0) result:  
if (x > y) { 
  z = z - x; 
} else { 
  x = z - y; 
} 

 
while(x != 0) { 
 // ... 
} 
 
while(z < 5) { 
 // ... 
} 
 
while(count) { 
 count--; 
 // . . . 
} 

 
Logical Operators: && (AND), || (OR), == (EQUAL), ! (NOT)  
 
if ((j == 0) || (x < 100)) { 
  // ... 
} 
 
canContinue = 1; 
while((i < 5) && (canContinue)) { 
 // ... 
 canContinue = 0; 
} 

 
 
 
  



ECE2049-E22  2-8 

Bitwise Operators 
In systems-level (and embedded) programming, we often need to operate on individual bits of a 
variable.   
 
 
 
Bitwise Operators: & (AND), | (OR), ~ (NOT), ^ (XOR),  

>> (Right shift), << (Left shift)  

 
These operators operate on each bit of the data type (hence, bitwise):  
 
char a = 0x85;   // 1000 0101b 
char b = 0xF0;   // 1111 0000b 
 
char k = a & b;  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
char m = k >> 2; 
 
 
 
 
 
 
 
 
 
 
 
 
 
char c = ~b; 
 
 
 
 

  



ECE2049-E22  2-9 

Control flow 
 
If/else statements (also called “Conditionals”) 
Used for making decisions:  
if ( k > 100) { 
    k = 0; 
} else { 
    k += 1; 
} 

 
Alternate form for small statements, the conditional operator (also known as the ternary 
operator):  
k = (k > 100) ? 0 : k + 1; 

 
You can also have many conditional blocks:  
if(x > 0) { 
   y++; 
   doSomething(x, y); 
} else if ((x > 0) && (y != 2)){ 
    y = 100; 
    // ... 
} else if(x > 100) { 
    // ... 
} else { 
   // ... 
} 

 
NOTE: Brackets around your if/else statements (or loops) are not required, but you should 
always use them!  
 
  



ECE2049-E22  2-10 

Switch/Case statements 
x = getValue(); 
 
switch(x) 
{ 
case 1: // if x == 1 
    doSomething(x, y); 
    y = 0; 
    break;  // Must have these at the end of each case.  Why? 
case 2: // if x == 2 
    doSomethingElse(); 
    break; 
case 12: // if x == 12 
    doSomeOtherThing(); 
    break; 
default: // For all other values 
    break; 
} 

 
Case statements can be useful for making decisions about a single value. They can also be useful 
for implementing complex control structures like state machines, which we will discuss later.  
 
Loops 
 
While loops 
Can use to iterate over a set of values:  
i = start_value; 
 
while(i < end_value) { 
    /* Body of loop */ 
    // ... 
    i++; 
} 

 
Example:  How many times will the body of the loop execute? 
int a = 32; 
while(a > 0) { 
    // . . . 
    a = a – 8; 
}	  



ECE2049-E22  2-11 

Can also use a while loop to wait for something:  
int data_is_ready = 0; 
while(data_is_ready != 0) // Stay in loop until data is available 
{ 
   data_is_ready = get_data(); 
} 
 
// After the loop, use the data 
do_stuff_with_data(); 

 
For loops 
For loops are a different syntax for a simple while loop (like the first example): 
int i; 
for(i = start_value; i < end_value; i++) 
{ 
    /* Body of loop */ 
} 

 
 
 
Break and Continue 
The break keyword will exit the current loop.  The continue statement will skip the rest of the 
current iteration and start the next one.   
int i; 
int data[100]; 
for(i = 0; i < 100; i++) 
{ 
    if(check_input(arr[i]) == -1) { 
        break; 
    } 
    do_thing(arr[i]); 
} 
// . . . 

int i; 
int data[100]; 
for(i = 0; i < 100; i++) 
{ 
    if(check_input(arr[i]) == -1) { 
        continue; 
    } 
    do_thing(arr[i]); 
} 
// . . . 



ECE2049-E22  2-12 

The "forever" loop 
Infinite loops are not often desirable in programs. However, embedded programs use them all 
the time in certain circumstances, like your main function.  
void main(void) 
{ 
  /* Initialize variables, do setup tasks */ 
 
  while(1){ 
      // Perform tasks that your device needs to do! 
  } 
} 

We will discuss more about how to write programs using this paradigm later.   



ECE2049-E22  2-13 

More Data Representations 
 
Arrays 
Arrays are contiguous group of a certain data type, stored sequentially: 
// Declare an array of 10 ints 
int a[10]; 
 
// Initialize an array 
int arr[4] = {1, 2, 3, 4}; 
 
// “Indexing” an array 
int a0 = arr[0];  
int a1 = arr[1]; 
 
int a_last = arr[3]; 
 
int *arr_ptr = arr; // Name of array is pointer to its first element 

 
Strings 
In C, we can also define arrays of characters using "double quote", which make up groups of 
displayable characters.  
Convention:  C-style strings (or “null-terminated strings”):  arrays of ASCII characters followed 
by a special byte called a null-terminator (which has value 0x00, usually written as ‘\0’).  
When you type a string in “double quotes,” a null-terminator is automatically included. 
 
The null terminator is used to tell functions that operate on strings when it reaches the end of the 
string.  
 
 
For example, we can represent the string "ECE2049" as follows:  
char *str = "ECE2049"; // The string "ECE2049" 
 
// This is the same as writing out each character in array form 
char str[8] = {'E', 'C', 'E', '2', '0', '4', '9', ‘\0’}; 
 
// Or we could write out each character in decimal or hex. 
char str[8] = { 'E',  'C',  'E',  '2',  '0',  '4',  '9', ‘\0’}; 
char str[8] = {0x45, 0x43, 0x45, 0x32, 0x30, 0x34, 0x39, 0x00}; 
 
// All have the same meaning, we are just entering them differently! 

We will discuss strings in more detail later, but you should know that they exist since you will 
see them in lab. You should also know about the existence of null terminators. 
  



ECE2049-E22  2-14 

Pointers 
A pointer gives the location of something of in program memory—this is also known as a 
memory address.  We will discuss pointers in further detail later.   
 
Complex data:  structs 
 
We can define complex data types called structs, which are composed of other data types: 
// Defining a struct 
struct point { 
    int x; 
    int y; 
}; 
 
// Declaring variables of type “struct point” 
struct point p1; 
 
// Setting and accessing members of a struct 
p1.x = 5; 
p1.y = 2; 
// . . . 
 
struct point p2 = {1, 2}; // Declaring and initializing a struct 
 
int z = p1.x + p2.x; 

 
We will discuss these in more detail soon. 
 

Data representations:  Would you like to know more? 
 
In the next segment, we will talk even more about data representations! 

• Representing fractional numbers:  fixed-point and floating point 
• Machine code:  the compiler turns your C code into a binary format to create instructions 

the CPU can understand 
 
  



ECE2049-E22  2-15 

Program structure in C 
 
In C (as in other programming languages), you can separate your programs into a series of 
smaller functions to complete certain tasks.  
#define MAX_BUTTONS (4) // Constant for the number of buttons on the board 
 
int some_value;         // Global variable (visible to whole program) 
 
// Function prototypes 
int check_button(char button_id); 
 
void set_led(char led_id); 
 
 
// Function definition 
int check_button(int button_id) 
{ 
    int button_state = 0; // Local variable for this function 
 
    // ...actual function body goes here... 
 
    return button_state; 
} 
 
// Need to implement other functions too!   
 
void main(void)  
{ 
   // Variables local to main 
   int i, button; 
 
   while (1) 
   { 
       for(i = 0; i < MAX_BUTTONS; i++) { 
    int button = check_button(i); 
    if(button == 1) { 
        set_led(i); 
    } 
       } 
       // Do other things.. perhaps wait for a while? 
   } 
} 

 


