

ECEZO49GRÉ3_

TRIMone c EXAMPLES

MEMORY LAYOUT BYTE ORDER

OIfom.ITuns 46PMADMinI

IWI DUE TODAY ON CANVAS

LY SIGNOFF DUE THURSDAY BY
END OF OFFICE HOURS 6PM

W ONLINE AFTER CLASS DUE NEXT

TUESDAY

I STARTS THURSDAY

ED DISCUSSION ASK QUESTIONS
ONLINE HERE

ECE2049: Homework 1

ECE2049-E22 Page 1 of 1

Material: Lecture 1
Due: Start of Lecture 3: Tuesday, 24 May 2022 by 2pm EDT

Submission notes:

• For full credit, please show your work and denote your answers with a circle or a box.
• Always write and draw your diagrams neatly! We cannot be expected to GUESS what you meant to

write!
• Please see the submission guidelines on the homework page of the course website for details.

1. (5 pts) Please do the following logistical tasks to help you get started with the course:
a. Register for the course discussion board (EdStem) using your WPI email address:

https://edstem.org/us/join/VBSzQc

b. Complete the course background survey to provide some information about prior courses you
have taken. This will help me calibrate course content to accommodate everyone. You can find
the survey here: https://wpi.qualtrics.com/jfe/form/SV_3ZV5f1gTa8swdOm

2. (5 pts) You are given three 16-bit values shown below. Each of these values can be interpreted as:
• An unsigned number
• A sign-magnitude number
• A two’s complement number

Provide the decimal (base 10) equivalent of each value for each of these interpretations. Show your
work.

a. 0x4048
b. 0x448C
c. 0xDEED

2. (5 pts) A hardware device is responsible for reading the state of 8 relays that control a manufacturing
process. The device represents the state of each relay (R0—R7) in an 8-bit value v, with the state of
relay R0 is stored in the least significant bit, and the state of R7 in the most significant bit.

If the device returns the value v = 0x5B, which relays are on?

I
7 0 4048

H
Prat Is

0 4048 3 Olio oooo doo tooo

unsion 214 26 23 16451
SIGN MI6 SIGN BIT IS 0 7 A

214 20 23 561

2 S COMP
214 20 23 561

ÉPÉED
all01111011101101

SIGN MAGI NUMBER IS NEGATIVE
2 S COMP NUMBER IS NEGATIVE

gtd.com
tf

0010 0001 0001 001 I
213 28124 21429 8461

I

0 4048

WRITE AS
UNSIGNED

SIGN MAGNITUDE

2 S COMP

FIRST WRITE 0 4098 AS BINARY

0 4048 7 0 0 oooo dido 1 8

UNSIGNED 2 t 29423 16456J

SIMMNITUDI SAMA MMMM MMM MMMM
s

MSB IS SIGN BIT TO POSITIVE

214 8 23 164562

2150g
positive SO SAME

DEED
UNSIGNED I
SIGN NG

2 s COMP SIGN BIT IS 1 SO
NEGATIVE

DEEDS 1101 1110 1110 1101 BIN

i
213 28424 21 27 8967J

ECE2049-E22 3-1

Module 3. Of Integers and Endians & Floating Point
Representations

Topics
• Memory organization and endianness
• More data representations: overview of floating point

Last Time
• C programming basics
• Data representations for characters

Warmup: try the following…
int z = 0x4007;

// a. What is the size of z (in bytes)?
// b. In C, how is z stored (unsigned, sign-magnitude, 2’s comp)?

if (z & 0x8000) {
 alpha();
} else {
 beta();
}

// c. Based on the value of z, which function would get called?

I INT 213456 16 BITS

Éf O Fuse

Toooooooooo
i

1100 0 1 V
0000 0110 0 06

go.gg
Lets us test IF
A BIT OR BITSARE SET

IS POSITIVEC

TEST IF A NUMBER X
IS POSITIVE W O G

s z

INT IS POSITIVE INT X
11CHECK IF SIGN BIT IS SET
RETURN TRUE IF IT IS

RETURN A 0 8 000

X
1 000 0000 0000 0000

0,8080

Ex 171111 1111 1111 111

RETURN OXFFFF Good TRUED
I FALSE
O
ITRUE

ECE2049-E22 3-2

Memory organization

What does it mean to type “int a” in C? This is called variable declaration, which allocates
space in the program's memory to store an int.

What do we mean by memory? You can think of memory as a big table of "addresses" that each
map to a certain piece of data. This data could be a variable (as above), or it could be a piece of
code, a portion of the hardware, etc., but for now let's focus on variables.

On the MSP430, addresses are 16-bits long, and each address refers to one byte.

Recall that the MSP430 is a 16-bit architecture,

Unfortunately, this is no longer completely true! Newer MSP430 variants (like ours
MSP430F5529) utilize 20-bit addresses. Why?

Z

INT A 42

s

t

I65536 Bytos

16 KiB
total MEMORY EFFIE Éif

I KiB 1024 BYTES 2lb I 1 BYTE86 32 BIT ADDRESSES 16BITS 8 BITS232 46 B
86 64
264 a EIB

220 M D
EXTENDADDRESS SPACE

W HARDWARE CHANGE

MJPY304 WE WON'TDEAL W

IT MUCH

ECE2049-E22 3-3

Laying out variables in memory

When you declare variables in your program, they are arranged in memory starting at a certain
address. For now, it is sufficient to know that variables in main start at address 0x4400. We will
discuss why in an upcoming lecture.

When variables are declared, they are (usually) arranged in order from this starting address.
For example:

char a = 0x11;
char b = 0x22;

…can be arranged in memory as follows:

Address Data Variable

In our class, we will arrange memory in a table like the one above, with the starting address at
the bottom. We use this convention because we are typically representing variables on the
program stack, which starts at a fixed base address and grows up.

In

MAINE S

E

STARTFROMBOTTOM 0 4401 22h B414,4 0,4400 11h A

MAINC 93
CHARIB

T
FCI
Fo

FC O2
sins84 c

ECE2049-E22 3-4

Endianness: Ordering bytes

In the previous example, we have left out an important detail. How do you store variables that
are larger than a byte?

As declared on the MSP430, a long is has a size of four bytes:
long v = 0xAABBCCDD; // AAh is the most significant byte (MSB), and
 // DDh is the least significant byte (LSB)

For multi-byte variables, we have a choice–do we arrange the data with the least significant byte
first, or with the most significant byte first? Which is correct? Does it matter?

This concept is known as endianness, which governs how a processor orders bytes in memory.
There are two forms of endianness:

Little Endian (LE)
 Little Endian stores the least significant byte first, meaning that the memory in this example
would be arranged as follows:

Address Data Variable
0x4403 AA

V
0x4402 BB
0x4401 CC
0x4400 DDh

Big Endian (BE)
 Big Endian stores the most significant byte first, as follows:

Address Data Variable
0x4403 DD

v
0x4402 CC
0x4401 BB
0x4400 AAh

LSB

MSB

BYTEORDEN

OTADBBCCDD Msp
KE LOOKS out

4 OFORDER WHEN
MSB 1B J

z y

WE READ LEFT RIGHT

LSB BE COOKS IN ORDER
WHEN WE READ

LEFT TORIGHT
MSB

1

ECE2049-E22 3-5

Important points on endianness
• Endianness is a fundamental part of the architecture's design. When a processor is

designed, it is designed to use a specific byte order–you cannot change this with a
compiler setting.

• Is one endianness better than the other? No, they simply reflect different design choices.
• Big endian is read "left to right", which is intuitively easier to read for those accustomed

to languages written left to right
• Little endian makes it easier to slice out small portions of a variable (eg, what if you only

want the first byte of a long?)

When will you deal with endianness?
Endianness becomes especially important when you need to transfer data between different
architectures. Examples include any stored data format or network protocol.

 E MJPY30 86 PPLE

BE PowerPC DSPCHIPS
NETWORK BYTEORDER

INTERNETTRAFFIC

INDIANNESS
MATTERS FOR ALL METHODS

BY WHICH DATA IS TRANSFERRED

BETWEEN SYSTEMS

FILE FORMATSNETWORK i

ECE2049-E22 3-6

More memory layout: Arrays
How do arrays work, anyway?

In C, we can declare arrays and use them as follows:
// Declare an array of 5 bytes
char arr[5];
// Declare an array of 5 bytes, and initialize it (set it with some initial values)
char arr[5] = { 0xAA, 0xBB, 0xCC, 0xDD, 0xEE };

// You can access elements of an array by "indexing" into it
// In C, array indexes start at 0
char c = arr[0]; // The first element
char d = arr[4]; // The last element (arr has size of 5, so last index is 5 - 1 = 4

You can think of the elements of the array laid out like this:

Index 0 1 2 3 4
Element
Value

Why is it important that array elements are contiguous? (And must contain elements of the
same type?)

What would happen if we tried to get the 6th element of arr?

9 5 343 Ere FREE
0 4400 04401 014402 049403 0 4404

WANTTO MAKE IT EASY
KIND

THE ith
ELEMENT

Ai Hot i SKETCH EASYMeans
CONSTANTTIME

BASEADDRESS ENEELEMENT OCDt.si
p ARRIGO

Noerror THIS WILL COMPILE BUTPROGRAM
CHECKING WILL READWHATEVER DATA IS IN

THIS SPACE BUT ITS NOT
PART OF ARR NOTWHATYOUWANT

BUFFER OVERFLOW
CLASSIC SECURITYPROBLEM

ECE2049-E22 3-7

How endianness affects arrays (or rather, how it does not)

A fundamental property of arrays is that their elements are stored contiguously in memory in
order of their index (as discussed above).
Endianness does not change the order of array elements.

For example, if we laid out the array from the above example on a Big Endian (BE) and a Little
Endian (LE) system, it would look like this:

Address BE LE
0x4404
0x4403
0x4402
0x4401
0x4400

However, endianness does affect the ordering of the bytes in each element of the array! In the
previous example, the elements were just 1 byte each!

Example: an array of ints:
int iarr[2] = {0x1122, 0x3344};

Here, the memory would be organized as follows:

Address BE LE
0x4403
0x4402
0x4401
0x4400

ÉÉÉE
Arras

Bappi Arno

2g

ELEMENTARE type nT
EACH ELEMENT IS Z BYTES

it TierraARRL 0 4402 A
TARRED 94400 EFFI IARREI

DoobCHANGE DOESNOTCHANGE

W DIFFBYTE
ORDER

ECE2049-E22 3-8

Using addresses as data

We can also have variables that contain memory addresses. These are called pointers.

You can get the address of a variable with the “address-of” operator (&):
long v = 0x11223344;
long *pv = &v;

In this example, we say that pv is declared as the type “pointer to long,” which is indicated by
the “*” before the name pv.

How big is pv?
,

What is the value of pv?

We can lay out these variables in memory as follows:

Address BE LE
0x4405
0x4404
0x4403
0x4402
0x4401
0x4400

You work w POINTS ALL THETime

E

PV HOLDS ONE MEMORYADDRESS

ONMsp430 7 2 BYTES IEBITI
STARTING ADDRESS OF V

predatory
pr contains

if r u's sorry
NOT ITS

A CONTENTS

ECE2049-E22 3-9

How big is a pointer?
A pointer is the size of a memory address for a given architecture. On the MSP430, an address
has a size of 2 bytes (16 bits).

Type Size (bytes)
int
long
char
long long

Type Size (bytes)
int *
long *
char *
long long *

This is one way in which pointers are powerful: a pointer can represent a larger data structure in
the program—by passing around the pointer, we can avoid copying or moving the larger data
structure.

How are pointers used with arrays?
Whenever you use arrays, you use pointers. Consider the following example:
int iarr[10];
int i = iarr[5];

When you index into an array, the program actually does the following:
int i = *(iarr + 5); // Equivalent to writing iarr[5]

Here, the * is the dereference operator, which gets the value at the given address. This is
called dereferencing the pointer—it is the opposite of the address-of (&) operator.

ALLIEVIME
SIZE

I g on SAME
SYSTEM

for
GETHEDPITTIMEMORYADDREÉ

ARR STARTING ADDRESS OF GARRO
I SRR

ECE2049-E22 3-10

Working with Pointers

Pointer math: When performing arithmetic operations on pointers, the address changes in
increments based on the type of the pointer.

// Example 1: array of char
char carr[4];
// How big is the array?

// Say the starting address is 0x4400, what is the address of carr[3]?

// Example 1: array of int
int carr[4];
// How big is the array?

// Say the starting address is 0x4400, what is the address of iarr[3]?

Passing arrays: Further, when you use the name of an array (either to store or pass to a
function), you are passing a pointer to the first element of the array. This is the “starting point”
of the array used as input to calculate the index.
int *ptr = iarr; // Could also write &iarr[0]
do_thing(iarr, 10); // Same here

void do_thing(int* arr, int size) { // Function takes pointer to array (+ size)
 // . . .
}	

Hi Ao ti SIZEOF A
A

YELEMENTS I BYTEELEMENT YBYTES

0 4400 3Shefford
0 4403

Y ELEMENTS Z BYTES INT 8BYTES

0 4400 3
SREIANTI

0 4400 6 0 4406

HOW DO YOU KNOW THE SIZE OF

AN ARRAY IN C

NO WAY TO TELL
FROM JUST THE POINTER

UP TO THE PROGRAMMER TO HAVE A CONVENTO

EG ARGUMENT
NULLTERMINATEDSTRINGS

ECE2049-E22 3-11

Memory organization example

Here's a larger example of memory organization. How would we organize the following
variables?
unsigned int a = 0x00FF;
long int b[2] = { 65540, -5 };
char c = 'c'; // 'c' = 0x43

How many bytes of memory do we require?

N

r r
p

0 7408STIFF
BLEW

VARIABLESALLOCATED IN ORDER

STEPL WRITE EVERYTHING IN HEY

B EACH ELEMENT IS Y BYTES TYPE IS
1 LONG INT

BLOT 65590
65536 4 216 22

3 oooo oooo oooo 000 000 00008 0000 ofd
00 0 I 00 04

BETTOOOOOOYR
B D 5 NEGATIVE SO DO 2 s comp

0 0000 0000 0000 0101 MAGNITUDE

i i iiii
a

FF FF F F F B BLIFFFFFFFBIN
A 2 DYTES

Bi 2 ELEMENTS 4BYTESELEMENT 8 BYTES

C I BYTE 11 BYTES TOTAL

ECE2049-E22 3-12

So using the above information, we can make our table:
Address BE LE
0x440C

0x440B

0x440A

0x4409

0x4408

0x4407

0x4406

0x4405

0x4404

0x4403

0x4402

0x4401

0x4400

Al BIBB I C
D GEE

BUT 000100044 4343
BED FFFFFFFBL

f
Be

j

ORDER OF VARIABLES ALWAYS

THESAME BUT ORDER OF BYTES

WITHIN A VARIABLE CHANGES W

ENDINGS

CHAR STR HELLO I

Stig
CHAR S HELLO

4404 0 45 SLY
i

g4403 513

4402 I É sea

INT STRLENGTH CHAR S S

