£CE 2047

EXMAL

“ M a

wd

LA o,

Byre

3
R

O icr

| \é
X

uns

2Ly,

7L

>4
Y

FF

E

Buves

By

D pF

EFFIcE

Alok.C {

a

WLINE

rZa

77

AYY)

TS

Java

/S

'(&f!(

3
>
-\

Ut

k)

L

NE7

~

ECE2049: Homework 1

Material: Lecture 1
Due: Start of Lecture 3: Tuesday, 24 May 2022 by 2pm EDT

Submission notes:

For full credit, please show your work and denote your answers with a circle or a box.

Always write and draw your diagrams neatly! We cannot be expected to GUESS what you meant to
write!

Please see the submission guidelines on the homework page of the course website for details.

(5 pts) Please do the following logistical tasks to help you get started with the course:
a. Register for the course discussion board (EdStem) using your WPI email address:
https://edstem.org/us/join/VBSzQc

b. Complete the course background survey to provide some information about prior courses you
have taken. This will help me calibrate course content to accommodate everyone. You can find
the survey here: https://wpi.qualtrics.com/jfe/form/SV_37ZV5fl1gTa8swdOm

(5 pts) You are given three 16-bit values shown below. Each of these values can be interpreted as:
¢ . An unsigned number
e , A sign-magnitude number
e A two’s complement number

Provide the decimal (base 10) equivalent of each value for each of these interpretations. Show your

work.
Oa. 0x4048 </ DMIOI/

b. 0x448C
¢. 0xDEED

(5 pts) A hardware device is responsible for reading the state of 8 relays that control a manufacturing
process. The device represents the state of each relay (RO—R?7) in an 8-bit value v, with the state of
relay RO is stored in the least significant bit, and the state of R7 in the most significant bit.

If the device returns the value v = 0x5B, which relays are on?

ECE2049-E22 Page 1 of 1

7

—
/

Q O
Q ~—_ A — —)
w.ﬂ _ /0_ \/ ,,/01 /rw . O §
L L ~ g 0
SN I I I T 3 Sl 28 Fle o -
~— ~ — -
_lﬂ R . . ~ N N NS S 67,\/
>) "N N QO =~
S \) I 5 ~
o~ Q <
A.._L , * ~ ,/.N U Y 4>
Q -~ & <Q < S NN //” S Au N
. w RN & N N Q % N © Ny
= NY = - O+
ol YoV ™ 33 Je& | 5=
M o
W =~ : QA ~ ST iy N ~)
N ~0 ﬂ ~ O Y Sl ~ g
N D O 2 X 9 N
N2) ‘ T O B \
mﬁ M 3 W AN R j)
\Q N
NS O™ N (N RN ~J
S \ S
AN ~ W Y
J 3
' M\
~ N Y
N N N
A QO

— i AS

_ LNC16NED

— $bur— b reps

Foesr eitE Opfotf Ac BuAey

é . 7
GCryoYf =2 000 0ooo Oloo 7?0100D
) & S
S0 5 2 + 2t 7= / / 5 7 i/é
&

Sen — MA s IR i Al AERN Ak A

R)T O =FulNE

2L Conf

— For,TVE [0 (his

on ez, !
UWSIEN), [5/
C/len~ pléb .
(
2 ConPl s Bir IS /, L2
L7702
Jrzp=>))ol o Mo /ol Bw
06)0 boo Gool) OO) D Eond
+ — [0
B O T~
06)0 200) o©oo) o),
" N ~ r
— (272520 2 P et

ECE2049-E22 3-1

Module 3. Of Integers and Endians & Floating Point
Representations
Topics
e Memory organization and endianness
e More data representations: overview of floating point
Last Time
e C programming basics
e Data representations for characters

Warmup: try the following...
int z = 0x4007;

‘ // a. Wh;i-; the size of z (i '>/’-7 //1/7_: Zfﬁzﬁ: /é F/Y{‘

(in bytes)*
// b. In C, how is z stored (unsigned, sign-magnitude, 2’s comp)?

fm D O =PFALSE X

@ O ; ’

beta 0

) / o
) 0

// c. Based on the value of z, which function would get called?], .
U/ /

—

= @/00 oo6oco QOood O/

oo O0O©O Qo000 0Qooo
76 Q000 0007@_
1> i)

ﬂ /{00 OE)

AT
O g 06000 O 0 o106
C _
EOI 0000 OEJO 1 K 16

TQ?‘, Lerd o0 77 /F
A BN o 30rC s ST

%mw(\
T ST F A pIA D, Na
/L fecnwE w/o & &
L >

/¢ Pocirive Comr) S

/) CNCE g7 Slew piT (S CLT

LTV TR0E 10 (T /0.

peETVRN ! < A & Orfoco)

<
N
(E:)‘ - - = -_—a e o - e - -
| oo 0O 00009 pooo Ooos
O» 00 0

~(=7 1)) 1 1) 1))
4

)oo2 @ood 000 OCC @

[000 0000 Q00O 000 O

Reroepw (Of}»’FFP 6 07(000> = ’(7/,31/5)
~] =7 Lo
>0 N TRIE

ECE2049-E22 | 3-2
vt A= 12

Memory organization —_— T <

What does it mean to type “int a” in C? This is called variable declaration, which allocates

. — . —
space in the program's memory to store an int.

What do we mean by memory? You can think of memory as a big table of "addresses" that each
map to a certain piece of data. This data could be a variable (as above), or it could be a piece of

code, a portion of the hardware, etc., but for now let's focus on variables.

On the MSP430, addresses are Lo:hitslong, and each address refers to one byte.

Recall that the MSP430 is a 16-bit architecture, 74@0,2545 ' %4 LVES

©, 00006
L6 7 /24
(2" Pose,pre «@%tfféf)(| By7E) Br000] | A4

= bS5I36 pyry t

6 &R |

-

J

TorpL MEAORY 0 FFFE 61 FF
) O FFFF Grl0
(1 %8 = 1oey Zrres) \
\ 2 -l pyrE
L EL 22 BIT ADDRSCEC W =2
27 16/8 (¢ 8170)
JOe-bl

-)
Z zZ £ B
\./_1
Unfortunately, this is no longer completely true! Newer MSP430 variants (like ours

MSP430F5529) utilize 20-bit addresses. Why? w EWO ADD WL ((PIcg
Ly NaeDwAre CRVEE.
0 |
27z [M D

(NSPU30R) e wov T DEAC wff
/- fevct!)

ECE2049-E22 3-3

Laying out variables in memory

When you declare variables in your program, they are arranged in memory starting at a certain
address. For now, it is sufficient to know that variables in main start at address 0x4400. We will
discuss why in an upcoming lecture. —

When variables are declared, they are (usually) arranged in order from this starting address.
For example:

ML) 7

~char a = 0x11;
char b = 0x22;

4

...can be arranged in memory as follows:

/3/ C@,/wvm,g Address | Data | Variable

(nar Frer BoTTDA, Qs (Y0 | 22 B

o OP oz {fo0 |)4 A
el

In our class, we will arrange memory in a table like the one above, with the starting address at
the bottom. We use this convention because we are typically representing variables on the
program stack, which starts at a fixed base address and grows up.

_—

MAL (95 _
CHML A DB
Foy

;P

18X / i3

CrAL (! ST
’7 &)’

ECE2049-E22 3-4

Endianness: Ordering bytes

In the previous example, we have left out an important detail. How do you store variables that
are larger than a byte?

LsI3
As declared on the MSP430, a long is has a size of four bytes:

long v = OxAABBCCDD; // AAh is the most significant byte (MSB), and
// DDh is the least significant byte (LSB)

=
N miR
For multi-byte variables, we have a choice—do we arrange the data with the least significant byte
first, or with the most significant byte first? Which is correct? Does it matter?

This concept is known as endianness, which governs how a processor orders bytes in memory.

There are two forms of endianness: AN)
A o !
PITE owpen”
Little Endian (LE)

Little Endian stores the least significant byte first, meaning that the memory in this example
would be arranged as follows:

- 7
) &7("y 23cc pD/’ ?}:14(1rc)e§s lA);lta ;a;;il;e LE Look({ QU7
/[1 Ox44ol‘2 BB O% ORPER) wer)
JUCE L1 0x4401 | CC ! W LD (LT genr
0x4400 | DDh
Big Endian (BE) N 5]

Big Endian stores the most significant byte first, as follows:

Address | Data | Variable ,

0x4403 [DD -, ¢ BE LooRS ///L) @,zpz;/L"
0x4402 |cCC > . o

- . WHEN g pan
0x4401 | BB

0x4400 | AAh LEF7T >0 RieN7,

“ M5

Here is an example of being Endian-ed!

A

A nice plot of a file of unsigned integers as created on a little endian machine.

Below is a plot of the same data file havin
endian machiné. The data is good! It is th

. ADCoums {E0I0A mVeon)

80D

Y8000 Fvrenvannan

F4000 v e vrnnmne

g
§ 8

:

:

Imponant Test Signol - 232005
T H

........ / ,\

4 5
s Time (secends)

Ls -

€ same

g being read in as unsigned integers on a big

as above! All that has changed is the

endianness of the machine that read the data.

AD Counts

The table below shows the first few unsi
the little endian computer a
the hexadecimal values,

Test Signal as Received?
T T T

//QA/Z 544'5 "

Time (seconds)

gned integer values from the data file created on
s read by both of the machines. The byte swap is evident in

RO —

—_——

ENDinnw-~-0ES

o

N

—— - —-}/ . -
Read as Liitle E ndian Read as Big E’nd‘ian_‘"’F
[8178 [tEF2)n 61983 PR
8193 2001h 288 0120 h
8194 2002 h 544 0220 h
8182 1FF6h 63007 F61Fh
8201 2009 h 2336 0920 h
' sn01 2009 h 2336 0920h |
; . . o Desiin/
< e Pa&,x‘“ + - M s ;‘9'?.’05:6356{
o “:Qunc/‘ét aw afz LR e @8"’

et

ECE2049-E22 3-5

Important points on endianness

e Endianness is a fundamental part of the architecture's design. When a processor is
designed, it is designed to use a specific byte order—you cannot change this with a
compiler setting.

e Is one endianness better than the other? No, they simply reflect different design choices.

e Big endian is read "left to right", which is intuitively easier to read for those accustomed
to languages written left to right

e Little endian makes it easier to slice out small portions of a variable (eg, what if you only
want the first byte of a long?)

When will you deal with endianness?
Endianness becomes especially important when you need to transfer data between different
architectures. Examples include any stored data format or network protocol.

APPLE
2 P
[E ME 730// go&é/ J1/

BE. %wﬁZPC/ psr fﬂ/ij

! erwote PYTE ORPEL ’
(wrenrs TRIFFIC)

gmwlwvm JATTLS fon AeL 1ETRoRS
Zf WA DIA /0 TR EEp)
Lértoczn) (Arams

[Fles Fords /l/c7w0)<;<-,»)

ECE2049-E22

More memory layout: Arrays

How do arrays work, anyway?

In C, we can declare arrays and use them as follows:

3-6

// Declare an array of 5 bytes
char arr[5];

1 // Deedmm= an array of 5 bytes, and initialize it (set it with some initial values)

char arr[5] = { OxAA, 0xBB, 0xCC, 0xDD, OxEE };
—— \‘—“Q—\
// You can access elements of an array by "indexing" into it
// In C, array indexes start at O
char ¢ = arr([0]; // The first element
char d = arr[4]; // The last element (arr has size of 5, so last index is 5 - 1 =

4

You can think of the elements of the array laid out like this:
Index 0 | 2 3 4

Element | A22.(0] | Ae2(1| pre(z)| AREGL| peilly
Value | JAap | AR cC | pD Er
Orffo0 orrfol op{l02 0003 Oxpyor

Why is it important that array elements are contiguous? (And must contain elements of the
same type?) /s

LORNT 10 JAKE (T LMY 70 FI0D 7c [
ELEAAT

74}» = A+ (7 # 5/2&0}564)) ALY aapo

"
7b *7T——:;_ CZ» ACZMD'7DME

Jree oF * ¢ EArecwing)
PAte A0DBeL(ONE Lt C)

(e, (g, &)
What would happen if we tried to get the 6™ element of arr?

/7
/ 74/21640\0\0 j - .
ZW"L) L RS Ll CoMpPILe , PUT posem

Clécrems, Wil BEAD WNGEyed. DI74 1 ()
N (e Bur (4 War

WRT op AP ([por WRAT™ g, MMa

DOFFRY oyprsoed
CLALSIC (LeotlryY ProBieh,

ECE2049-E22

3-7

How endianness affects arrays (or rather, how it does not)

A fundamental property of arrays is that their elements are stored contiguously in memory in
order of their index (as discussed above).
Endianness does not change the order of array elemengs.

For example, if we laid out the array from the above example on a Big Endian (BE) and a Little
Endian (LE) system, it would look like this:

Address | BE | LE
0x4404 EE Lfé
0x4403 DD D.D
0x4402 CC|ce
0x4401 BB /BB
0x4400 N M

Arer (4

ALRR(o])

However, endianness does affect the ordering of the bytes in each element of the array! In the

previous example, the elements were just 1 byte each!

Example: an array of ints: Ve [;LMU‘/YL ACE T';/Pé‘: /Uf/
| int)iarr[2] = {0x1122, 0x3344}; EACN L MBNT)¢ 2 TY7ES

— == —

Here, the memory would be organized as follows:

[AZR(1) = Optfo2 5
IARK(0] = Cxlfo0

Address

LE

0x4403

BE
yy

0x4402

25

22
17

=
0x4401 22,

!

0x4400

P 11

922

Z) pen (1
] 118007

Dot (HAORE N Dok JOOT CHANKE

v DFE B
ORDEN

ECE2049-E22 3-8

Using addresses as data

We can also have variables that contain memory addresses. These are called pointers.

—

%‘7 LK ‘/V/ /90)”/7@&5 A ¥

You can get the address of a variable with the “address-of” operator (&):

N /

long v = 0x11223344;
. e e
long *pv = &v;

-

In this example, we say that pv is declared as the type “pointer to long,” which is indicated by
the “*” before the name pv.

How big is pv?

: 7V Ao DS ONE Sl ot) ﬂ@p@! (¢
OO NP0 =2 2 BES (k E/7j(’>

What is the value of pv?

— S7penb Aopekl oF V'

pv = LV =Ter {00

We can lay out these variables in memory as follows:
Address | BE | LE

0x4405 yy 1 f[/

0o
0x4404 Lfl{ 00

7V ConTAIS
0x4403 l{l{ N

/
0x4402 2] VS /ZUE!
0x4401 Zi %_3 M /A@L/—
0x4400 l, Z/|{ /(907‘ /Z&

7! Conrinrf

ECE2049-E22 3-9

How big is a pointer?
A pointer is the size of a memory address for a given architecture. On the MSP430, an address

has a size of 2 bytes (16 bits). AlLL NA vE

: , 7NE (A
Type Size (bytes) Type Size (bytes) -)
int é\ int * Z I/ZZ&\
long 2 long * 2,
char [char * 2. (0’0 QJYLW
long long i 8 long long * z. f}’ﬁﬁD

This 1s one way in which pointers are powerful: a pointer can represent a larger data structure in
the program—>by passing around the pointer, we can avoid copying or moving the larger data
structure.

How are pointers used with arrays?
Whenever you use arrays, you use pointers. Consider the following example:

int iarr[10];
int 1 = iarr[5];

When you indgk into an array, the program actually does the following:
jn

|int i= :(iaf?f + 5); // Equivalent to writing iarr[5]

=

Here, the [* is the dereference operator, which gets the value at the given address. This is
called dergferencing the pointer—it is the opposite of the address-of (&) operator.

GET TRE DATR 47 T oty OPDECL(

PIL. = crapTine 4ADPPESL OF
/A g/,m;7 P)Z,D% Emee(o)

ECE2049-E22 3-10

Working with Pointers

Pointer math: When performing arithmetic operations on pointers, the address changes in

increments based on the type of the pointer. 74 Lo ' ~
)= A o Sieeor (4)

// Example 1: array of char A
char carr([4];

// How big is the array? [}’LL&’W&/U))() p/ré/ééukéﬂﬂﬂ:) y ﬁ/fb’g

// Say the starting address is 0x4400, what is the address of carr[3]°?

G ¢ {100r 3 Cizevr Ccuad),

VN I aYy] -
// Example 1: array of int = Ux YI’OJ (

int carr[4];

(1 mon i se e e O ewhonr)(2. Jyres/wr) = & BorEC

// Say the starting address is 0x4400, what is the address of iarr|

6n /{00 + 3% S12e0r (1)

)
T

2
= Ox Y00 # & = ,
¢ 700 # & Crltos
Passing arrays: Further, when you use the name of an array (either to store or pass to a

function), you are passing a pointer to the first element of the array. This is the “starting point”
of the array used as input to calculate the index.

int *ptr = iarr; // Could also write &iarr[0]
do thing(iarr, 10); // Same here
—

void do thing (int* ;. IAt sim Function takes pointer to array (+ size)
/T =)
) LRGY =D e AL [ARLLD

Albw Do Yy pow e Size OF

AN 0 (,7
o WAy 70 TELL Feol (T R mwTen .
P 75 AL /210)4/@4/?/%/2, T YL A CovdATiow

£E. — _AComEMT
— pULL TAMMM ST /6L

ECE2049-E22 3-11

Memory organization example

Here's a larger example of memory organization. How would we organize the following

variables? / /

” unsigned int a = 0x00FF;)/

long int b[2] = { 65540, -5 };

char ¢ = 'c¢'; // 'c' =3>i‘4_3 AL/t TA&L&)\/
-y 7100 1S SILT
— VAIALL L ALLOCATED 0 aepur .

§7é/9 /. Wmm LVAYTIVE)1 %

7, Lacy erenenT 1S BITES Fyps g >
/ /W

Lopwée
Ble] = 458/0

= (55%6! - Z 12
% |8 V<

) 7 Z 0
;cgcoa ooee | Boco 0O0O) 6660 (G000

o200 o] co

0 o | @ 6 o 7
IGEAY), 000/4/‘

RL7 < -5 (P LD L o)
O ... 0obo ococd 0OLO OlO| MIEN TV DE

oo ey 122) 1010 Conp
1) ’5/)7

rl[/// /”J///l /a//
How many bytes of memory do we requlre

[~
fE e FF @/‘"f/’; ro))
A 2 PITES
B (2 Lumwre)(1 Birs/ELneT) = £ 297tS

C.) Byre =) RYILS ForAL.

ECE2049-E22 3-12

So using the above information, we can make our table:
Address | BE | LE

0x440C /74 | Koz [8031 C
0x440B =,)
5(07: _Q? o) OO 0?/7 03308 | 3] y3 % c

- _ _ 0x3305 |2 B[£p|.
ZC{K FF~ F/C//ﬁ/(05108 | 2p | P B

- 0x4407 FF :
C < {jé 0x4406);:};: FB :

—
0x4405 0? 00|
0x4404 00 0] , BC@J

0x4402 (60 gy | . | -

0x4401 0/3 o0)d
0x4400 00 OF

oEphiL oF V] ABLES ALwA¥S B
2 GME 2T oppen OF BL7EK
IFFNW 4 woABLE CRUES)
/\a

LPDLUPPIES,

) !

Crt el = NkzLo

A= Or028f

6 0 C
CrAr. 3 £ = l//</é‘<i Lo &
R 74;%// NE L d
‘i pZ "\’ Ooh Y49
¢ 0y ‘0’ qF SLYJ
v Y07 v e $(37
Y02 U e &Y
10 E’ YT) s
B VY00 ' 4 S(aY

;
wr ST Lewgrn(Cloe L) P

