ECE2049-E22

Module 4. MSP430 Architecture & Intro to Digital 1/O

Topics
e Getting to know the MSP430 Hardware
e Start of Digital I/O

Last Time
e Memory Organization
¢ Floating point format

4-1



ECE2049-E22 4-2

Getting to know the MSP430 Hardware

In a programming course, typically you focus on just the code:
o Learn a high level programming language and some algorithms
o Use a "computer" from a high level

A typical program does three things:

A few common points for all kinds of software:
o Use constructs like loops, conditional, algorithms like search, sort, data structures
o Software: write logic and syntax correctly and it will just work
o Library functions for /O

... but what's inside the "computer"? How does it work? When you are writing in a high level

programming language, do you care?

In contrast, developing software for embedded requires much more in depth knowledge about
the microprocessor that is the target of your program. For instance, it's important to know:



ECE2049-E22

A general software hierarchy

We can think of the software components in a system and the way they interact with the
hardware as a hierarchy or software stack:

A general computing device (PC) might have a software hierarchy like this:

Applications

Operating System
(Includes user interface)

System Software: Interface to hardware

Hardware (CPU, Memory, Peripherals)

On an embedded system, this stack gets “squashed”:

Application

System software / OS

Hardware (CPU, Memory, Peripherals)

o Application is closely integrated with the hardware layer

« Little or no operating system—usually only runs one task or a set of tasks

o Often little or no "wrapping" of functionality

o On larger systems, you may use a Real Time Operating System (RTOS) that provides
some basic support for multitasking. ..

43



ECE2049-E22

A general microprocessor hardware architecture

In general, any microprocessor system has the following components:

CPU (Central Processing Unit)
The "core" of the computer

Memory
Stores information

Peripherals

4-4



ECE2049-E22 4-5

How does the CPU work?

The CPU executes machine code, which are low-level instructions directly run by the
hardware. Machine code is a binary format seen by the CPU.

e Instructions perform very specific tasks

e Instruction set (ISA) is different for every CPU type (MSP430, ARM, x86, ...)

e Compiler is responsible for figuring out how to build all programs using these

. .
instructions!
£€] main.c &2 = O ||z= Disassembly 52
90 o ee562c: 134F CALLA R15
91 while (1) // Forever loop 28562¢e: 40F1 0020 eele MOV.B  #0x0020,0x001e(SP)
92 { 005634 : 40F1 0020 eel2 MOV.B #0x0020,8x0012(SP)
93 / Read buttons S1-54 » @8563a: 13B@ 6646 CALLA  #readButtons
oA ret_val = readButtons(); @0563e:  4CC1 008C MOV.B  R12,0x880c(SP)
005642 415C eeec MOV.B  @x@e8c(SP),R12
setLeds(~ret_val); 005646: E37C INV.B  R12
if (~ret_val & exel) { @05648:  13B0 6834 CALLA  #setleds
BuzzerOn(); 20564c: 415F eeec MOV.B @x0eec(SP),R15
005650: E33F INV.W R15
if (~ret_val & ox@38) { 005652: B31F BIT.W #1,R15
BuzzerOff(); - 005654: 2402 JEQ (C3DWSLIMaingSSE)
} 005656: 13B@ 6932 CALLA #BuzzerOn
0e565a: 415F eeecC MOV.B 0x800c(SP),R15
/ Check if any keys have been pressed on the 3x4 keypad 208565e: E33F INV.W RIS
currkey = getKey(); 005660: B23F BIT.W  #8,R15
if ((currkey >= '@') && (currkKey <= '9")) { 885662 : 2402 JEQ (C3DWELSMain$73$E)
setleds(currkey - 8x38); @05664:  13B@ GA76 CALLA  #BuzzerOff
005668: 13B@ 61t CALLA #getKey
else if (currKey == "*") { 908566¢C: 4CC1 @eeD MOV.B  R12,@x@eed(SP)
BuzzerOn(); 005670: 90F1 9830 eeeD CMP.B #0x0030,0x000d (SP)
111 } 005676 2808 JLo (C$DWSLIMain$10%E)
112 else if (currKey == '#') { 985678: 90F1 @@3A @0eD CMP.B  #@x0@3a,0x0e00d(SP)
113 Buzzer0off(); 00567e: 207 JHS (C$DW3LIMain$103E)
114 } 0056380: 415C eeeD MOV.B oxeoed(SP),R12
115 0056384 : 807C 0030 SUB.B #0x0030,R12
116 if (currKey) 005638: 13B@ 6334 CALLA  #setleds
117 { - 00568c: 3Cen IMP (C$DWSLIMain$14%E)

We will never write in assembly in this class. However, it is important that you understand that
these instructions exist!

CPU instructions operate on...
e Internal Registers: 16 general purpose registers (R0-R15)
o Storage locations inside the CPU used for recent instructions
All registers are 16-bits wide (except RO and R1, which are 20 bits)
Can be accessed very quickly (one clock cycle)
Some registers control program execution
(RO = Program counter, R1 = Stack pointer, R2 = Status register)
e Memory: Instructions read from and write to memory
o Load and store data from the outside world using the memory bus!



ECE2049-E22 4-6

What goes in memory?
Remember that memory doesn't just store your variables—it stores the program's code as well!
e The CPU needs to load both code and data from memory

There are two generic types of memory architectures used by microprocessors and
microcontroller systems:

e Von Neumann Architecture (~1952)

o Harvard Architecture (~1944)

Harvard Architecture: Separate memory address spaces for code and data

Code Addr Data Addr

Code Code cPU - Data Bus | Data
Memory Control Y Memory
Control

V.
Peripherals

Benefits: Instruction fetch and data read happen in parallel
Drawbacks: Separate instruction and data buses
In this form, the Harvard architecture is used today by highly-pipelined systems like DSP chips.

Von Neumann Architecture: Single memory address spaces for code and data

Memory
Control Bus
Address Bus
CPU —T
(Code)
er\.r\ ________________
Data Bus
(Data)
Peripherals

Benefits: Single address and data buses (simpler to interface)
Drawbacks: Implicit bottleneck since we have the same pipeline for code and data



ECE2049-E22

The MSP430 Architecture

The MSP430 is a family of microcontrollers—there are hundreds of versions of this CPU with
various configurations of memory and peripherals!
e You can think of it as a type of System on a Chip (SoC)

In our labs, we use the MSP430F5529
o 128KB of flash memory: Used for code storage
« 8 KB of RAM (+ 2KB RAM for USB controller): Used for data storage
o Lots of peripherals
o 32 bit multiplier
o Timers, comparator, USB controller
o Much, much more!

How much more? Here’s a block diagram:

XIN XOUT RST/NMI DVCC DVSS VCORE AVCC AVSS PA PB PC PD
A ] | | | | | P1.x, P2.x, P3.x, P4.x_ P5x_ P6.x  P7.x  P8.x DP,DM,PUR
v v v v v v
N A N A N A A
XT2IN — P SYS
Unified [ ACLK Power I/0 Ports /0 Ports I/O Ports /O Ports
Clock P1/P2 P3/P4 P5/P6 P7IP8 Full-speed
XT20UT €{—{system| » smcLk| 128KB 8KB+2KB 2x8 1/0s 2x81/0s || 2x81/0s 1x8 I/0s usB
96KB 6KB+2KB Interrupt 1x3 1/0s
64KB 4KB+2KB Port Map USB-PHY
LDO & Wakeup
328 svmisvs || Contrel USB-LDO
MCLK Flash ram | LBrownout (P4) PA PB PC PD USB-PLL
as 1x16 0s || 1x16 /0s || 1x161/0s || 1x11 VOs
cPUXv2 MAB DMA
an
Working MDB 3 Channel
EEM
(L: 8+2)
usclo,1 ADC12_A
TAO TA1 TA2 TBO USCI_Ax: 12 Bit
Jggx’ UART, 200 KSPS REF COMP_B
Interface MPY32 Timer_A Timer_A Timer_A || Timer_B RTC_A CRC16 IrDA, SPI
5¢C 3cc 3cC 7¢cC 16 Channels 12 Channels
Registers || Regi gi gi USCI_Bx: | [(14 ext/2 int)
SPI, 12C Autoscan

Note the lines connecting all of the peripherals: this is the memory bus!
MAB: Memory Address Bus
MDB: Memory Data Bus



ECE2049-E22

MSP430 Memory Organization

Memory: A group of sequential locations where binary data is stored
e On the MSP430, each memory location holds one byte
o Each byte has a unique address which the CPU uses to access it
o Multibyte data is stored in Endian!

Two types of memory: Volatile and Non-Volatile

RAM (Random Access Memory)
o Our MSP430 has 8KB of RAM + 2KB for USB

« RAM is volatile, meaning that it loses its state when the chip is not powered

o Used as data memory
o Accessed via read and write instructions

Flash
o Used primarily for code memory

« Flash is non-volatile, meaning that its state persists even if the chip is not powered

o CPU fetches code from flash automatically

e Accessed via program control, but more difficult than RAM
o Write time >> Read time
o Writes must occur in large segments (512 bytes)

4-8



ECE2049-E22 4-9

How are programs stored in memory?
When a program is compiled, the linker arranges different portions into various memory
segments, which are stored in different contiguous memory regions. The most important
segments are:
e The stack (.stack): Stores local variables and context information on each function call
e Constant data (.data, .bss): Stores global variables and other constant data (strings,
lookup tables, etc.
o Text (.text): Compiled code for your program (code you write + libraries)
e Heap: Dynamically allocated memory (avoid using this!)

When compiling, the linker reads a script called a command file, which maps each section to a

memory device. Usually, most code is stored in flash, while most data goes in RAM, though it
may be necessary to adjust these requirements. Why?

Why should we avoid dynamically allocated memory?



ECE2049-E22

Memory architecture and layout

The MSP430 is a 16-bit microcontroller, meaning that:
o The data bus is 16 bits wide
o Internal CPU registers are 16-bits

Note: MSP430 '5Sxxx and '6xxx families use a 20 bit address bus to allow access to at most
IMB of memory.

However, memory isn’t just one big block....

4-10



ECE2049-E22 4-11

Mapping Memory

In practice, the “memory space” is mapped across the different types of memory and hardware
devices connected to the CPU.
e This includes the different types of physical memory (RAM, flash), as well as hardware
peripherals
e The mappings of which components use which addresses is based on the physical wiring
in the IC (we know the mappings based on the header files)



ECE2049-E22 4-12
The Memory Map (found in MSP430F5529 datasheet)
Table 5. Memory Organization'"
MSP430F5522 mggzggiggﬁ MSP430F5527 MSP430F5529
MSP430F5521 MSP430F5515 MSP430F5526 MSP430F5528
MSP430F5513 MSP430F5514 MSP430F5517 MSP430F5519
Memory (flash) Total Size 32 KB 64 KB 96 KB 128 KB
Main: interrupt vector 0OFFFFh—-00FF80h 00FFFFh—O0OFF80h 0OFFFFh-00FF80h 00FFFFh—O0OFF80h
N/A N/A N/A 32 KB
Bank D 0243FFh—01C400h
Bank C N/A N/A 32 KB 32 KB
) 01C3FFh-014400h 01C3FFh-014400h
Main: code memory
Bank B 15 KB 32 KB 32 KB 32 KB
00FFFFh—00C400h 0143FFh-00C400h 0143FFh—-00C400h 0143FFh-00C400h
Bank A 17 KB 32 KB 32 KB 32 KB
00C3FFh-008000h 00C3FFh-004400h 00C3FFh-004400h 00C3FFh-004400h
Sector 3 2KB® N/A N/A 2 KB
0043FFh—-003C00h 0043FFh-003C00h
Sector 2 2KB® N/A 2 KB 2 KB
RAM 003BFFh—-003400h 003BFFh—003400h 003BFFh—003400h
Sector 1 2 KB 2 KB 2 KB 2 KB
0033FFh—-002C00h 0033FFh-002C00h 0033FFh—-002C00h 0033FFh-002C00h
Sector 0 2 KB 2 KB 2 KB 2KB
002BFFh—-002400h 002BFFh—-002400h 002BFFh—-002400h 002BFFh—002400h
USB RAM®@ Sector 7 2 KB 2 KB 2 KB 2 KB
0023FFh-001C00h 0023FFh-001C00h 0023FFh-001C00h 0023FFh-001C00h
Info A 128 B 128 B 128 B 128 B
0019FFh—-001980h 0019FFh-001980h 0019FFh-001980h 0019FFh-001980h
Info B 128 B 128 B 128 B 128 B
Information memory 00197Fh—001900h 00197Fh—001900h 00197Fh—001900h 00197Fh-001900h
(flash) Info C 128 B 128 B 128 B 128 B
0018FFh-001880h 0018FFh-001880h 0018FFh-001880h 0018FFh-001880h
Info D 128 B 128 B 128 B 128 B
00187Fh—001800h 00187Fh—001800h 00187Fh-001800h 00187Fh-001800h
BSL 3 512 B 512 B 512 B 512 B
0017FFh-001600h 0017FFh-001600h 0017FFh-001600h 0017FFh-001600h
BSL 2 512 B 512 B 512 B 512 B
Bootstrap loader (BSL) 0015FFh—001400h 0015FFh—001400h 0015FFh—-001400h 0015FFh—-001400h
memory (flash) BSL 1 512 B 512 B 512B 512B
0013FFh-001200h 0013FFh-001200h 0013FFh-001200h 0013FFh-001200h
BSL 0O 512B 512B 512B 512B
0011FFh—-001000h 0011FFh-001000h 0011FFh—-001000h 0011FFh—-001000h
. Size 4 KB 4 KB 4KB 4KB
Peripherals 000FFFh-0h 000FFFh-0h 000FFFh-0h 000FFFh-0h

(1) N/A = Not available

(2) MSP430F5522 only

(3) MSP430F5522, MSP430F5521 only

(4) USB RAM can be used as general purpose RAM when not used for USB operation.

What can we learn from this?

o RAM starts at 0x2400, implemented in 2KB "Banks"
o Flash uses the address range 0x4400 to OxFFFF

o Code is written to flash starting from this address
o What about addresses 0x0010-0x0fff?



ECE2049-E22 4-13

So what’s the deal with addresses 0010h-0FFFh again?

These addresses are assigned to peripherals:

e FEach peripheral has its own registers that are mapped as part of the memory that the CPU
can access

e CPU can read or write data to peripherals just like any other memory address

This is how you make the CPU do 1/0!



ECE2049-E22 4-14

Input and Output

Consider this C code for a general-purpose system:

#include <stdio.h>

void main ()
{
char inKey = '-'; // declare variable named inKey
// and initialize to ASCII '-'

while (inKey != 'X");

{
/* get character from keyboard */
inKey = getchar();

/* display character entered on screen */
putchar (inKey) ;

What is really happening here?

getchar () and putchar () are functions from the C standard library (part of stdio.h)
e Library for these functions is part of OS, and linked into code during build process
e These functions have always been part of the standard library because general purpose
systems have always needed to use this type of I/O (eg. keyboard, screen, ...)

Example: When a key is pressed, several layers below our little application, a byte has been
placed on the microprocessor’s data bus from a port connected to the keyboard:




ECE2049-E22 4-15

Digital I/O: The Basics

Why do we use Digital I/O anyway?
Digital I/O is a method of directly inputting our outputting logic levels to the pins of the
MSP430 Package.
You can use this functionality to implement almost anything!
e Simple devices: Buttons and LEDs
e Control signals for complex peripherals

e ... and more!

Fun Facts about Digital 1/O
o Eight independent, individually-configurable ports

o Ports 1-7 each have 8 configurable pins, and are thus 8 bits wide; Port 8 is 3 bits wide

« Each pin of each port can be configured individually as input or output
o What makes something an input or an output? Inputs are devices from which you
read a state, outputs require you to write a state to it.

o Ports 1 and 2 can generate interrupts on certain events, which are control signals that can
be accepted or ignored by the MSP430
o We will discuss these soon!

o Each port is controlled by six single-byte registers
o All the I/O port registers are memory-mapped, meaning that each register associated with
a digital I/O port has a unique address in memory
o How do you know what the addresses are? These are defined in msp430.h and

msp430£5529.cmd. In these files, each register is given a specific name.

o Many more fun facts can be found in the User’s Guide!



ECE2049-E22 4-16

Digital I/0 Registers (Part 1)

Each Digital I/O port has six registers to control its features. We will start by discussing three of
them:

Direction Register (PxDIR)
Sets port pins as Input or Output
Set to 1 = Output
Set to 0 = Input

Input Register (PxIN)

Output Register (PxOUT)

The other registers are:
e Function Select Register (PxSEL)
e Drive Strength (PxDS)
e Pull-up/Pull-Down Resistor Enable (PxREN)

We will discuss these (using examples) later.

Conceptually, once you know which registers to use, using Digital I/O is pretty simple—all you
need to do is read or write the desired values to the registers.



ECE2049-E22

Digital I/O Concepts: Input or Output?

How do you know if something is an input or an output?

4-17

Consider the LEDs on our board. Are they inputs or outputs? What logic level lights the LED?

D1
P 7
P6.2/A2 o v N
Jumper Resl
50 Red LED
D2
P9 ’5‘
P6.1/AL I o ”
Jumper Resl
50 Green LED
D3
P10 4’
P6.3/A3 s ”
Jumper Resl
50 Blue LED
P11
P6.4/A4 1
— 2
[ Xout »—1— 3
Jumper D4
n
11A4A
Resl
50 Yellow LED




ECE2049-E22 4-18

Example: Buttons
Consider the buttons on the Launchpad board:
User Buttons

S1
T

EZJ_L/&_

P11 1,42 | GND

Are the buttons inputs or outputs? Inputs! We "read" values from them.

Consider S1. What logic level indicates the button is pressed? What about when it is unpressed?



