<

Co00f [rpaves 4

NN

v
,7’7;«)1.(#/#4 VP et (

MNePdip Aecyrecins

O 101 Ly 14

\

\

AR - Steworp DJE AT twp pf
) 4
GEEICE HEC s (fern)

Lap o Penr e By JLSGEN PRt

1/4’8 /| Siarmic 7000V

\
S
~X
-
ke
X

0V e £ STLL Loperirg

LIWE

2

\

Cipss o) 7288 [Vg/ ’

At)

pre (/ wiee o B

ECE2049-E22

Module 4. MSP430 Architecture & Intro to Digital I/O

Topics
e Getting to know the MSP430 Hardware
e Start of Digital I/0

Last Time
e Memory Organization
e Floating point format

4-1

ECE2049-E22 40

Getting to know the MSP430 Hardware

In a programming course, typically you focus on just the code:
o Learn a high level programming language and some algorithms
o Use a "computer" from a high level

A typical program does three things:

) READ . Cohe DAty
2. MAMPOLATE DATA SOMER o1

5. GUTRUT DATA
A few common points for all kinds of software:
« Use constructs like loops, conditional, algorithms like search, sort, data structures

« Software: write logic and syntax correctly and it will just work
o Library functions for I/O

... but what's inside the "computer"? How does it work? When you are writing in a high level
programming language, do you care?

In contrast, developing software for embedded requires much more in depth knowledge about
the microprocessor that is the target of your program. For instance, it's important to know:

/
' riosen” o TARDUWALE

ECE2049-E22 4-3
A general software hierarchy

We can think of the software components in a system and the way they interact with the
hardware as a hierarchy or software stack:

A general computing device (PC) might have a software hierarchy like this:

Applications
Jorons bl Zm‘;/ Mras, S /LQ%)A;Z,,% Fovioes [pTEARICE
Operating System e Y y L ﬂﬂﬂ)@/é‘ﬁ

(Includes user interface)

WED APFX,
Cutipes, W05, Ly Kaprom.. ”

System Software: Interface to hardware

2 HRDwAre JBSTH AcTior L AYEI-

Drlyions, (H0L)
Hardware (CPU, Memory, Peripherals) COMMON LA V4 7@ (ot w /

DIFE Ndwowkrnt T7PEL

On an embedded system, this stack gets “squashed”: -
LKLY amy e AP, ot A AL (E

Application 7
R
ﬁ System software / OS j 7/'-70//‘) Sﬂl /) LML SoFTALE LIB/Z/Z/bg
- AEN TBHTR Jiredbirion
Hardware (CPU, Memory, Peripherals) L/ ,gdﬂpu)/,éﬁ ‘

o Application is closely integrated with the hardware layer

« Little or no operating system—usually only runs one task or a set of tasks

« Often little or no "wrapping" of functionality

« On larger systems, you may use a Real Time Operating System (RTOS) that provides

some basic support for multitasking. -
N geents
N’_

ECE2049-E22 m D ,d;;

. . 0 Ow lamn
A general microprocessor hardware architecture 7 0
N\ —_—
In general, any microprocessor system has the following components: \ —
\
@7 FFFF

%7
ApLrysc

a2% Merorf

77 E1 PN &t L ¢
CPU (Central Processing Unit) ﬂ WTO’”,S eEy 5 KEY. /3413
The "core" of the computer 7699 Co s JUWLE, |

— Lyrcvret Yourd Co)r 4

< [RpVi0el TiMIRG ([Aow FASF cope Js EeysD)

Memory
Stores information

— Covmppertd 2) CPU

— 7100 68 gr Mol i
f ny . /Z%Ofl// Z(()owcm)é WM@"/,)
—~ Vo(ATILE

C oo Vot ATIE (Lowe =T CrIIIEE)

Peripherals

— PBorpwg, 10§ 7o ADC L

. E[/&w/ﬁ///vé TRAT ¢ o TN,

ECE2049-E22 4-7

The MSP430 Architecture
The MSP430 is a family of microcontrollers—there are hundreds of versions of this CPU with
various configurations of memory and peripherals!

e You can think of it as a type of System on a Chip (SoC)

In our labs, we use the MSP430F5529 N Now VﬁLAﬂLE -
« 128KB of flash memr code storage
. 8 KB of Rm + 2KB RAM for USB controller): Used for data storage
e Lots of peripherals A VOLATILE /‘11’)"‘0"7

o 32 bit multiplier
, © Timers, comparator, USB controller
o Much, much more!

How much more? Here’s ablofymmﬂ\w%f p} 61T AL / 2

A | | | | X, P2.x), P3.x, P4.x, P5x, P6x P7x P8.x DP,DM,PUR

v
A A A A A V
XT2IN —- SsYS

Unified [ACLK Power I/0 Ports /O Ports 1/0 Ports /O Ports

Clock P1/P2 P3/P4 P5/P6 P7/P8 Full-speed

XT20UT €{—system| p smbik| 123KB || BKB+2KB 2x8100s || 2x810s || 2x810s || 1x810s uss

96KB 6KB+2KB Interrupt 1%3 1/0s

64KB || aKB+2KB Port Ma P USB-PHY

22KB LDO Contr & Wakeup USBLDO

MCLK SVMISVS (P2) -

| — Flash RAM Brownout PA PB PC PD USB-PLL

as’ \ 1x16 /0s || 1x16 /0s || 1x161/0s || 1x111Os
\ CPUXV2 ¢¢ > oma
and

X2 X T X2 S 2 X 2 X 2 X 2 S X 2

AL

Working

3 Channel

EEM
(L: 8+2)

usclo,1 ADC12_A

USCI_Ax: 12 Bit
UART, 200 KSPS REF COMP_B

IrDA, SPI

JTAG/

saw MPY32

RTC_A
Interface C- CRC16

16 Channels 12 Channels

USCI_Bx: | [(14 exti2 int)
SPI, 12C Autoscan

]

Note the lines connecting all of the peripherals™this is the memory bus! <
MAB: Memory Address Bus

MDB: Memory Data Bus T ﬂLW»Q

p)é ITAL JUTFACHS,

ECE2049-E22 4-5

How does the CPU work?

The CPU executes machine code, which are low-level instructions directly run by the
hardware. Machine code is a binary format seen by the CPU.

e Instructions perform very specific tasks

e Instruction set (ISA) is different for every CPU type (MSP430, ARM, x86, ...)

MACK g

e Compiler is responsible for figuring out how to build all progranis using these Cﬂ& A

instructions! [\,ﬁ
1€l main.c 22 = O ||z Disas

sembly &3
90 <& 88562c: 134F CALLA R15
91 while (1) // Forever loop 20562e: 40F1 @020 eele MOV.B #0x2020,0x0010(SP)
92 { 8085634: 40F1 0020 0012 MOV.B #0x0020,0x0012(SP)
93 // Read buttons S51-54 » 0@563a: 13B@ 6646 CALLA #readButtons
» 94 ret_val = readButtons(); 00563e: 4CC1 eeec MOV.B R12,@x@00c(SP)
95 2085642: 415C eeec MOV.B 2x008c(SP),R12
96 setleds(~ret_val); 005646 E37C INV.B R12
97 if (~ret_val & exel) { 0085648: 13B0 6834 CALLA #setleds
8 BuzzerOn(); 80564c: 415F @0eC MOV.B @x@@ec(SP),R15
9 2085650: E33F INV.W R15
if (~ret_val & ox@8) { 205652: B31F BIT.W #1,R15
Buzzer0ff(); = 005654: 2402 JEQ (C$DW3LIMain$S3E)
} | 3 805656 13B@ 6932 CALLA #BuzzerOn
88565a: 415F eeec Mov.B @x008c(SP),R15
'/ Check if any keys have been pressed on the 3x4 keypad 20565e: E33F INV.W RIS
currkey = getKey(); 005660 B23F BIT.W #8,R15
if ((currKey >= '@') &% (currKey <= '9")) { 205662: 2402 JEQ (C$DWSLEMain$73E)
setleds(currkey - @x30); 805664: 13B@ 6A76 CALLA #BuzzerOff
005663: 13B@ 61@E CALLA #getKey
109 else if (currkey == "*') { @0566c: 4CC1 @0eD MOV.B R12,0x00@d(SP)
110 BuzzeroOn(); 205670: 90F1 @e30e eeeD CMP.B #@x00830,0x0800d(SP)
111 } 805676: 2808 JLo (C$DWSLIMain$10%E)
112 else if (currKey == '#') { 885678 98F1 @03A 200D CMP.B #@x@@3a,@x0eed(SP)
113 BuzzerOff(); 8B567e: 2Ce7 JHS (C$DWSLIMain$10%E)
114 } 20856380: 415C eeeD Mov.B @xeeed(SP),R12
115 2085684 : 807C @eese SUB.B #06x0030,R12
116 if (currkey) 205638: 13B@ 6334 CALLA #setleds
117 { - 88568c: 3Cep IMP (CSDWSLImain$14%E)

We will never write in assembly in this class. However, it is important that youJunderstand that
these instructions exist! L

CPU instructions OPerate on... . 67Lo0DE]Q Peuft BATS
° In%%rnal Registers: lg general purpose registers (R0-R15)
rage locations inside the CPU used for recent instructions

All registers are 16-bits wide (except RO and R1, which are 20 bits)

o Can be accessed very quickly éene-dmgqgle)

o Some registers control program execution
(RO = Program counter, R1 = Stack pointer, R2 = Status register)
e Memory: Instructions read from and write to memory
oad and store data from the outside world using the memory bus!

L> moey pippy Slowsne TRV
CPU J2pe (TS

ECE2049-E22 4-8

MSP430 Memory Organization D J(")/A
Memory: A group of sequential locations where binary data is stored m\'\—'
e On the MSP430, each memory location holds one byte 07' ooeP OT 00

o Each byte has a unique address which the CPU uses to access it 0} FF
o Multibyte data is stored in Endian! -

\ |
Oy FFFF S

Two types of memory: Volatile and Non-Volatile

RAM (Random Access Memory)
e Our MSP430 has 8KB of RAM + 2KB for USB
+ RAM is volatile, meaning that it loses its state when the chip is not powered

—_—
o Usedas data@n_lory
o Accessed via read and write instructions

& USudLLy Fogr. (TFF LIEE Viiapi &

<LOM P fusare

Fash (E0/N, ZEMD cyiy fyphon
o Used primarily for g,ocﬁ.memory/?[/{/—)_,, Wt O/UCB/ ReAp 0;07/[/_7()

o Flash is non-volatile, meaning that its state persists even if the chip is not powered
- CPU fetchmrom flash automatically
o Accessed via program control, but more difficult than RAM

o Write time >> Read time

o Writes must occur in large segments (j_LQbQ@s)

:7 £ ELD-cwLy N0 Nor/ A

CoND:r100S
(Bv7 OE RO T EhcH
TINE WE Prosupk TRNE
Boten)

ECE2049-E22 4-9

How are programs stored in memory?
When a program is compiled, the linker arranges different portions into various memory
segments, which are stored in different contiguous memory regions. The most important
EEg_nl—eths are:

e The stack (sta ézf ﬁ local variables and context information on each function call

): Stores global variables and other constant data (strings,
_%

e (Constant data (. data
lookup tables, etc
o Text (.text): Compiled code for your program (code you write + libraries)

e Heap: mically allocated memory (avoid using this!)
—

When compiling, the linker reads a script called a comm which maps each section to a
memory device. Usually, most code is stored in flash, while most data goes in RAM, though it
may be necessary to adjust these requirements. Why?

hy should we avoid dynamically allocated memory?

MALLOC () =2 AKlowl PDderAr 7O

Aliochre Moroey AT
RURTINE (bm e PUMIVE)

_— MEMOLY 1L m)TEY
— JMALLoC)< ey Clovo-

T2 WE Ao Jems eeC i
IMBLVOEN o2

ECE2049-E22

Memory architecture and layout

The MSP430 is a 16-bit microcontroller, meaning that:
o The data bus is 16 bits wide
o Internal CPU registers are 16-bits

Note: MSP430 'Sxxx and '6xxx families use a 20 bit address bus to allow access to at most
IMB of memory.

However, memory isn’t just one big block....

4-10

ECE2049-E22

Mapping Memory

4-11

In practice, the “memory space” is mapped across the different types of memory and hardware

devices connected to the CPU.

e This includes the different types of physical memory (RAM, flash), as well as hardware

peripherals

e The mappings of which components use which addresses is based on the physical wiring
in the IC (we know the mappings based on the header files)

G) PP
FLASN
(coDk) Ao tyo0 |CPU

A K

(a1 d3LEs, SR,) oo
ACCESD I g
i . /%22’2 LAY AC

ﬁ;/u PutnlLs Op 6000 /

y
Mgl =AMLY
i) Alep e ¢

ECE2049-E22

The Memory Map (found in MSP430F5529 datasheet)

Table 5. Memory Organization'"

4-12

(1) N/A = Not available
(2) MSP430F5522 only

(3) MSP430F5522, MSP430F5521 only
(4) USB RAM can be used as general purpose RAM when not used for USB operation.

What can we learn from this?
o RAM starts at 0x2400, implemented in 2KB "Banks"
o Flash uses the address range 0x4400 to OxFFFF

o Code is written to flash starting from this address
o What about addresses 0x0010-0x0fff?

MSP430F5522 mggﬁggﬁgg,ﬁi MSP430F5527 MSP430F5529
MSP430F5521 MSP430F5515 MSP430F5526 ISP436F5528
MSP430F5513 MSP430F5514 MSP430F5517 MSP430F5519
Memory (flash) Total Size 32 KB 64 KB 96 KB 128 KB
Main: interrupt vector OOFFFFh—00FF80h 00FFFFh—00FF80h OOFFFFh—00FF80h 00FFFFh—00FF80h
Y
Bank D N/A N/A N/A 32 KB
0243FFh-01C400h
Bank C N/A N/A 32 KB 32 KB
) 01C3FFh-014400h 01C3FFh-014400h
Main: code memory
Bank B 15 KB 32 KB 32 KB 32 KB
—_— 00FFFFh—-00C400h 0143FFh-00C400h 0143FFh-00C400h 0143FFh—-00C400h
Bank A 17 KB 32 KB 32 KB 32 KB
an 00C3FFh-008000h 00C3FFh-004400h 00C3FFh-004400h 00C3FFh-004400h
Sector 3 2KB® N/A N/A 2 KB
0043FFh—-003C00h 0043FFh—-003C00h
Sector 2 2KB® N/A 2 KB 2 KB
RAM 003BFFh—003400h 003BFFh—003400h 003BFFh—-003400h
Sector 1 2 KB 2 KB 2 KB 2 KB
=3 0033FFh—-002C00h 0033FFh-002C00h 0033FFh—-002C00h 0033FFh—-002C00h
Sector 0 2 KB 2 KB 2 KB 2 KB
002BFFh—002400h 002BFFh—002400h 002BFFh—002400h 002BFFh—-002400h
USB RAM®@ Sector 7 2 KB 2 KB 2 KB 2 KB
0023FFh—-001C00h 0023FFh-001C00h 0023FFh—-001C00h 0023FFh-001C00h
Info A 128 B 128 B 128 B 128 B
0019FFh—-001980h 0019FFh-001980h 0019FFh-001980h 0019FFh-001980h
Info B 128 B 128 B 128 B 128 B
Information memory 00197Fh-001900h 00197Fh-001900h 00197Fh—001900h 00197Fh-001900h
(flash) Info C 128 B 128 B 128 B 128 B
0018FFh-001880h 0018FFh-001880h 0018FFh-001880h 0018FFh-001880h
Info D 128 B 128 B 128 B 128 B
00187Fh—001800h 00187Fh—001800h 00187Fh-001800h 00187Fh-001800h
BSL 3 512 B 512 B 512 B 512 B
0017FFh-001600h 0017FFh-001600h 0017FFh-001600h 0017FFh-001600h
BSL 2 512B 512 B 512 B 512 B
Bootstrap loader (BSL) 0015FFh—-001400h 0015FFh—-001400h 0015FFh—-001400h 0015FFh—-001400h
memory (flash) BSL 1 512 B 512 B 512 B 512 B
0013FFh—-001200h 0013FFh—001200h 0013FFh-001200h 0013FFh-001200h
BSL 0 512B 512 B 512 B 512 B
0011FFh—-001000h 0011FFh-001000h 0011FFh-001000h 0011EEh-064900h
) Size 4 KB 4 KB 4 KB 4KB
heripherals 000FFFh-Oh 000FFFh—0h 000FFFh—0h 000FFFh—0h ‘
—

ECE2049-E22 4-13

So what’s the deal with addresses 0010h-0FFFh again?

These addresses are assigned to peripherals:

e Each peripheral has its own registers that are mapped as part of the memory that the CPU
can access o

e CPU can read or write data to peripherals just like any other memory address

This is how you make the CPU do I/O!

N/Wf —Lociryip) (v
Medony Mipory +o0
Her or PR 2y,
— EACY plerfTiy \ac
DIFPERRY Ml s
For TR P s 07 Al pangs

o 7
4 Dsrme % OVTPVT Rlyycr,))

NOW 7D opyun AU 107

=~ 0N DlIiDy % POPILE Lizsron
10 Covwmer Crari- oF Pims

g, 6

e TITL]] f
/ L

()
on ~cy)p!

ECE2049-E22

Input and Output

Consider this C code for a general-purpose system:

?Z oV
V 414

h y)
Op ~cpyp

#include <stdio.h>

void main ()

{

char inKey = '-'; // declare variable named inKey

// and initialize to ASCII '-'

while (inKey != 'X'");

{
/* get character from keyboard */
inKey = getchar();

/* display character entered on screen */
putchar (inKey) ;

What is really happening here?

getchar () and putchar () are functions from the C standard library (part of stdio.h)

e Library for these functions is part of OS, and linked into code during build process

e These functions have always been part of the standard library because general purpose
systems have always needed to use this type of I/O (eg. keyboard, screen, ...)

Example: When a key is pressed, several layers below our little application, a byte has been

placed on the microprocessor’s data bus from a port connected to the keyboard:

ECE2049-E22 4-15

Digital 1/O: The Basics

Why do we use Digital I/O anyway?
Digital I/O is a method of directly inputting our outputting logic levels to the pins of the
MSP430 Package.
You can use this functionality to implement almost anything!
e Simple devices: Buttons and LEDs
e Control signals for complex peripherals

e ... and more!

Fun Facts about Digital 1/O
o FEight independent, individually-configurable ports

o Ports 1-7 each have 8 configurable pins, and are thus 8 bits wide; Port 8 1s 3 bits wide

o Each pin of each port can be configured individually as input or output
o What makes something an input or an output? Inputs are devices from which you
read a state, outputs require you to write a state to it.

o Ports 1 and 2 can generate interrupts on certain events, which are control signals that can
be accepted or ignored by the MSP430
o We will discuss these soon!

o Each port is controlled by six single-byte registers
o All the I/O port registers are memory-mapped, meaning that each register associated with
a digital I/O port has a unique address in memory
o How do you know what the addresses are? These are defined in msp430.h and

msp430f5529.cmd. In these files, each register is given a specific name.

o Many more fun facts can be found in the User’s Guide!

ECE2049-E22 4-16

Digital I/O Registers (Part 1)

Each Digital I/O port has six registers to control its features. We will start by discussing three of
them:

Direction Register (PxDIR)
Sets port pins as Input or Output
Set to 1 = Output
Set to 0 = Input

Input Register (PxIN)

Output Register (PxOUT)

The other registers are:
e Function Select Register (PxSEL)
e Drive Strength (PxDS)
e Pull-up/Pull-Down Resistor Enable (PxREN)

We will discuss these (using examples) later.

Conceptually, once you know which registers to use, using Digital I/O is pretty simple—all you
need to do is read or write the desired values to the registers.

ECE2049-E22

Digital I/0O Concepts: Input or Output?

How do you know if something is an input or an output?

4-17

Consider the LEDs on our board. Are they inputs or outputs? What logic level lights the LED?

D1
P8 4’
P6.2/A2 5 o Rl N
Jumper Resl
50 Red LED
D2
P9 S
P6.1/A1 I o R2 N
Jumper Resl
50 Green LED
D3
P10 - o
P6.3/A3 5 o o N
Jumper Resl
50 Blue LED
P11
P6.4/A4 1
2
[Xout >——— 3
Jumper D4
o
R4
Resl
50 Yellow LED

ECE2049-E22 4-18

Example: Buttons
Consider the buttons on the Launchpad board:
User Buttons
S1
rm
P21 1 _i-2
gl

P11 1,42 | GND

Are the buttons inputs or outputs? Inputs! We "read" values from them.

Consider S1. What logic level indicates the button is pressed? What about when it is unpressed?

