

ECEMELECTORETI QÉgÉPm nice
Wed 3 5PM Rush

ITT ite Yo Tours 46PM Nick

ADMINISTRND

LAB Ii SIGNOFFDUE TODAY BY
6PM END OF OFFICE HOURS

IF THIS IS POBLEMATIC LET

ME KNOW WE CAN SCHEDULEA
SIGNOFF MEETING

LATE POLICY TOY OFF FOR

UP TO ONE WEEK LATE

B2 STARTS THURSDAY

HWI ASSIGNED AFTER CLASS
LIKELY DUE THURS

Egli OUTAFTER CLASS Next tool
MOREDETAILS SOON

ECE2049-E22 5-1

Module 5. Digital I/O
Topics

• More Digital I/O

About Digital I/O

Why do we use Digital I/O anyway?
Digital I/O is a method of directly inputting our outputting logic levels to the pins of the
MSP430 Package.
You can use this functionality to implement almost anything!

• Simple devices: Buttons and LEDs
• Control signals for complex peripherals
• … and more!

M Dad

O logic 0 Or
LOGICLOW I

I s Cosio 1 73.36 tonus
LOGIC HIGH

CONNECT PHYSICAL PINS TO MEMORY

CONTROL W SOFTWARE

READ O on 1 From A Pin P'ETI

Vater

EDIE

I o ont
WHAT STATE IS

SWITCHIN

WRITE O OR 1 TO A PIN

CONTROL AN LED DIGITAL
I MOTOR RELY OUTPUT

SIGNAL FOR SOME OTHER
DEVICE

ABSTRACT VIEW OF AN Yo PIN
INSIDE THE MJPY30

PAIR

5

told Poser

SOMEHE IIFUNCTION MODE

ECE2049-E22 5-2

Fun Facts about Digital I/O
• Eight independent, individually-configurable ports, named P1-P8

• Ports 1-7 each have 8 configurable pins, and are thus 8 bits wide; Port 8 is 3 bits wide

Pins are referenced as P<port>.<pin>, eg. P1.4.

• Each pin of each port can be configured individually as input or output

• Most digital I/O pins share physical package pins with some other function on the device.
This is called pin multiplexing.

• Each port is controlled by six single-byte registers

What is a register, anyway?
Register:

• Registers have addresses just like standard memory, so you can read and write to them
• Provide interface between hardware and software:

o Reading from a register can get information about the hardware
o Writing to a register can change how the hardware is configured, or send

information to a component
• Functionality provided is defined by the hardware’s design. When TI designs the

MSP430, they define what registers are exposed to the programmer, which defines the
functionality available on the chip.

• All the I/O port registers are memory-mapped: each register associated with a digital I/O
port has a unique address in memory

o How do you know what the addresses are? These are defined in the MSP430F5529
datasheet, as well as msp430.h and msp430f5529.cmd

Pl 4 7 Port1 PINY

CIRCUIT THATACTS LIKE MEMORY IN your
CODE BUTHAS SPECIAL HARDWARE FUNCTIONALITY

ECE2049-E22 5-3

Pins on the Microcontroller
Microcontrollers often pack lots of functionality in a small IC. However, the usage of all this
functionality is limited by the physical pins on the IC package:

In order to maximize the usage of physical pins, most physical pins (also called “package pins”)
are shared between multiple device functions.

Any

PINOUT OR PIN DIAGRAM

PIN59 P7.6 TBG

TwoFY.tn1 pinkpink2 Fugitf 7TmenBo
s

ga
INPUT

PINMULTIPLEXING

ONE PART CAN OFFER MORE FUNCTIONALLY

THAN IT HAS PINS

UP TO DESIGNER TO PICK WHICH FUNCTIONALITY
TO USE From CODE

ECE2049-E22 5-4

Digital I/O Registers

The 6 registers controlling the digital I/O ports are as follows. Each bit of the register controls
the state for a specific pin.

Function Select Register (PxSEL)

Selects the port pin for Digital I/O–remember multiplexing? This selects the function used
on the pin.

Direction Register (PxDIR)

Sets port pins as Input or Output
Set to 1 = Output
Set to 0 = Input

Input Register (PxIN)

This is where the value input on the port appears (this is where you "read" the port)

Output Register (PxOUT)

This is where data to be output on the port should be "written"

Drive Strength (PxDS)
Pull-up/Pull-Down Resistor Enable (PxREN)

We will discuss these two (using examples) later.

Conceptually, once you know which registers to use, using Digital I/O is pretty simple–all you
need to do is read or write the desired values to the registers.

TEMPORE Pisa
SET O PIN IS IN DIGITAL YO MODE

SET to 1 i pin IS IN FUNCTION MODE

I Ey
DIRECTION REGISTER

gR P5DIR 0 0
8 5,3P5 7 Y ARE INPUTSWNTROLRELISTING5.3 0 pre outputs

IF PIN IS IN
INPUT CHAR VT PIN

READSTATE OFALL
58PINS ON

Pow's output
pout GAAgpgjgqP I oL

EACH REGISTER CONTROLS THE STATE OF 8 PINS
FOREXAMPLE PYDIR

CONTROLS THE INPUTOUTPUTMODE For
73.7 13.0

173.7

9316

E

HERE EACH BIT IN PAIR IS WIRED
THEINPUTOUTPUTCONTROL FOR A

DIFFERENT PIN

ECE2049-E22 5-5

Important Background: Bitwise manipulation
Because each bit in a register can control a different pin, we will make extensive use of C's
bitwise operators (&, |, ~) to manipulate registers.

This is a very common practice when interacting directly with hardware!

Recall the truth tables for the bitwise operators AND (&), OR (|) and NOT (~):

A B Z = A & B
0 0
0 1
1 0
1 1

X Y Z = A | B
0 0
0 1
1 0
1 1

A C = ~A
0
1

Where “X” is either 0 or

From these operators, we can build a set of techniques for individually controlling specific
bits in a variable while leaving the others unmodified.

Common operations using bitwise operators
Setting individual bits to 1
We can do this by OR'ing a specific bit (or bits) with a 1. This is called "setting" a bit.

Setting individual bits to 0
We can do this by AND'ing a specific bit (or bits) with a 0. This is called "clearing" a bit.

EXTRA VIDEO ON THIS
LADO PUZZLES

CONCEPTS

I 4 I 1
O

itO can I II get
X AND O IX or 1 71
AND I X X ORO 74

SET Bits to I

WIN
SET BITS to 0
V V OOF

V 0101 0101
V 1100 1100

Fiston

jÉ set to SET
FOOTPRESERVED

ECE2049-E22 5-6

"Selecting" specific bits from a variable
It is often necessary to check if certain bits of a field are set, or to only take the value of certain
bits from a variable. We can do this by AND'ing a variable with only those bits that interest us
set to 1–this is called masking bits.

You will use these techniques very frequently when working with digital I/O:

READ BITS I O OF V

CHART V GOI MASK
V o 101 0101

8
88 8 1

Entities
BITS I

O

ALLOTHERS
GO TO O

ECE2049-E22 5-7

Configuration Example
Example: Configure Port 3 for Digital I/O with pins 1 and 0 as inputs and pins 7-4 as outputs.

There are two ways we can approach this problem:

26 5 43 2 I 0
port3

DI
Set Pins For Digital Yo

MoDÉP3SEÉht
2 SETPINS AS INPUTON OUTPUT I P3DIR

ONEWAY BADWAY

P3SEL O IISET ALL PINSTOYoMODE

p3DiR GtFO's
p nput

IN THIS CASE PINS 3,2 ARE OVERWRITTEN
BUT THEY MIGHT BE USED FOR ATHYFUNKS

SHOULD PRESERVE VALUE

OF PINS WE'RE NOTUSING

I.ITpitiIouters
PORT 3 PINS 1 0 AS INPUTS

A SELECT PINS FOR DIGITAL To
SET PINS TOO

83SEL e PEL It from7654 3210PISEL XXXX XXXX

A SET BITS 7 4 AS OUTPUTS
SET TO 1

RECALL TO SET TO 1 USE BITWISE
OR W A I

P3 DIR XXXX XXXX
P3DIR P DA t Otto

114448ftt

H SET BITS I O AS INPUTS
SET to O

set Bits to 9
pzpr xxxx XXXXAND W A O

811111101P3DIR PIDIR OFC XXXXX XO O

NEED TO DO THESE
IN SEPARATE STEPS

ECE2049-E22 5-8

An even better way: Lose the "magic numbers"
In this lecture, it's clear what the constants 0xF0 and 0xFC mean, but will you remember what's
happening here 6 months from now? Probably not.

In C, as in many programming languages, it's good practice to avoid magic numbers, or hard
coded numbers that appear in the code without explanation of their meaning or purpose. Instead,
we can use constants to attach meaning to these values and allow them to be reused.

In this case, a set of constants for the individual bits are defined for us, we can just use them:

Name Hex Binary Name Hex Binary
BIT0 0x01 0000 0001b BIT4 0x10 0001

0000b
BIT1 0x02 0000 0010b BIT5 0x20 0010

0000b
BIT2 0x04 0000 0100b BIT6 0x40 0100

0000b
BIT3 0x08 0000 1000b BIT7 0x80 1000

0000b

We can also combine these constants to refer to more than one bit:

I

i n o

Ex B 52 BIT 0000 0100 BITZ

É B

r BITZ BITI r 000001108

1111 1001

PIDIN PIDIRAMBITHBITO
P3DIR OtF9

