

ECER9 MEGOFIIggy.IE6pm nice
Tomorrow 35PMRoshi

TITMORE
DIGITAL Yo Monday 35PM Rosa

INTRO TO LAB 2

Administer

Hwy DUE TODAY BY 1159PM
YOU CAN RESUBMITAFTER CLASS IF
YOU WANT

HWY ONLINE AFTER CLASS

TUE TOES BY 2PM

GRADES FOR HWI 3 THIS WEEKEND

LABIRE ORT DUE FRI BY 11 59 PM

LAB2 STARTS TODAY

PRELB DUE BYSIGNOFFOR ONLINE
SUBMISSION BY 6PM TUESDAY

Edt Out AFTER TUESDAY'S CLASS

WHICH WILL BE REVIEW

OpenBook NOTES INTERNET CALCULATOR BYNDIVIDLY
DESIGNED FOR I 2HRS

DÉTHRJNE1BZPR STARTOFCLASS

Topics Hw 1 4 Lectures 1 8
TNUMBER REPRESENTATIONS

MSP430 ARCHITECTURE
DIGITAL YO
GENERAL CONCEPTS FROM LAB

ECE2049: Homework 3

ECE2049-E22 Page 2 of 2

2. BONUS (2 pts): Fun with memory-mapped peripherals: Say you are you using a different
microprocessor that exposes the memory bus so that you can add new memory-mapped peripherals to it.
Assume that you attach your peripheral device and that it has one 16-bit value that the CPU can read at
address 0x1104.

How would you write code to read the value at this address? Like all register definitions in C, you can
do this with a single #define statement. Complete the definition below, which includes an example of
how the register should be used.

#define MY_REG (/* Fill in your definition here! */)

void main(void)
{
 int val;
 val = MY_REG; // Read the value of the peripheral at address 0x1104

 // . . .
}

at

PHR 5 II WRITE 5TO THE ADDRESS
WHERE DZDIR IS
ON MemoryBus

Y VANT TO WRITE TOMEMORY AT
0 1104

MY REG

DEREFERENCE

UNSIGNED INT 0,1104

ECE2049-E22 5-9

Digital I/O Examples
Example 1: Input and output registers
Assume the following digital I/O pins are configured correctly. P3.1-0 are
configured as inputs, and P3.7-4 are outputs.

A Hypothetical Specification:

Input: Read a 2-bit binary value a on P3.1-0
Output: Given a, set P3.7-4 based on the table:

Input Output

!! !" "# "$ "! ""

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

COMMGWIVALYÉ

13.1 PRO 173.713.613.513.4

I
n

INPUT Cy Ogpu
Enon

FINS 4 LEDS
OUR P3.7 413.11
CODE

MREpp P3,1 0 From INPUT REGISTER

CHAR INBITS PING BITI BITO
T

NEED TO SELECT ONLY BIN L O FROM INPUT
REGISTER

p in xxxx xx Mask

BHlBito

ONLY BITS I O CAN BE NONZERO

ECE2049-E22 5-9

Digital I/O Examples
Example 1: Input and output registers
Assume the following digital I/O pins are configured correctly. P3.1-0 are
configured as inputs, and P3.7-4 are outputs.

A Hypothetical Specification:

Input: Read a 2-bit binary value a on P3.1-0
Output: Given a, set P3.7-4 based on the table:

Input Output

!! !" "# "$ "! ""

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

NOW LET'S CONTINUE TO BUILD THIS
EXAMPLE ON ON OUR LAB BOARD

WHICHUSES DIFFERENTPINS

of pa pi I P62Phil P6.3Phil

RYLEDS
IN PUTS LOGIC OUTPUT

INPUT LAUNCHPAD BUTTONS
OUTPUT SOME LEDS

BUTHOW DO WE KNOW HOWWHERE

TO connoet to pins

e

i
OR CONFIGURE pull

IS CONNECTED PHY IF REQUIRED

3 INTERPRETTHE CIRCUIT
WHATDOES A 1 OR O MEAN

SEE DECODEREXAMPLE ON COURSE WEBSITEFOR A
COMPLETE EXAMPLE UI NOTES

ECE2049-E22 5-10

Digital I/O Concepts: Input or Output?
How do you know if something is an input or an output?

• If we are “reading” state from a hardware device, it is an input

• If we are “writing” or “setting” the state of a device, it is an output

Consider the LEDs on our board. Are they inputs or outputs? What logic level lights the LED?

In an application program like our demo project, we use the digital I/O ports repeatedly to use
the buttons and LEDs. In these programs, it’s a good idea to wrap the functionality for hardware
components into useful functions.

See setLeds() in the demo project for an example!

COMP I LAMI I N

ARE ATYPE

g
OFINPUT
WANTTO

GETESTATE

LEDSAREAN
6.2 6.116,3 6.4 EXAMPLE OF OUTPUT

WESETTHE
STATE

FOR THOSE LEDS
LOGIC TURNS ON LED

NOTE THESEARE NOT IN ORDER
HARDWARESOFTWAREINTERFACE

WANTTOUSEFUNCTIONALITY SETLEDSC FUNCTION
WITHOUTCARINGABOUTWHICHPINS PERFORMWHICH FUNCTIONS

CONNECTING LEDs A GENERIC PICTURE
ONE WAY AN OUTPUT
MSP430

LED IS AN OUTFIT

Pay

TYRPYORY LED

TEND OV

Mma.IE
WHAT LOGIC LEVEL TURNS go.is hON THE LED

0 Or I Kow OV

I F 3.3N

O'f
or r r

LED LED

TOV GND TOV GND

OFF ON
YO

VOLTAGE DROP
VOLTAGE DROP

Across LED ACROSS LED

cEiIM
Ex

R LEVEL LIGHTS

j.gg

ii i
o

Pay
por

MSP430 SINKS
CURRENT

COULDALSO USE A TRANSISTOR OR SOMETHING

ELSE TO PROVIDEMORE POWER

ET
a 3.30

OU or 33J

NEW

ECE2049-E22 5-12

Digital I/O Registers (cont.)

Pull-up/Pull-Down Resistor Enable (PxREN)
Activates pull-up or pull-down resistors when a pin is configured as a digital input.

What controls whether to use a pull-up or pull-down resistor?
The output register (PxOUT) is actually re-used for this purpose!
Set the appropriate bits to 1 for pull-up resistors, and to 0 for pull-down. See p. 408 of the user's
guide for details.

You will also see one more Digital I/O register…

Drive Strength (PxDS)
Controls "drive strength", or amount of current that is sourced from the pin when used as
an output. We will always use the default setting for this.
Set to 0 = Reduced drive strength (default) Set to 1 = Full drive strength

Important to note: all I/O pins have limits on the amount of current that can pass
through them (usually on the order of milliamps). See the MSP430F5529 datasheet for
details.

As an embedded developer, it’s always important to remember the requirements of the

hardware as well as the software!

Li ENABLE PULL UPIDOWN RESISTOR
O INTERNAL RESISTOR IS DISABLED

Me d

OSUALLYELOMAN

ECE2049-E22 5-13

Example: Launchpad Buttons (cont.)

We can configure these buttons as inputs and using pull-up resistors, as follows:
void initButtonsLecture(void)
{
 // Configure buttons as outputs using internal pull up resistors
 // Button 1: P1.1
 P1SEL &= ~BIT1;
 P1DIR &= ~BIT1;
 P1REN |= BIT1;
 P1OUT |= BIT1;

 // Button 2: P2.1
 P2SEL &= ~BIT1;
 P2DIR &= ~BIT1;
 P2REN |= BIT1;
 P2OUT |= BIT1;
}
Note that the buttons are on different ports, so we need to configure them separately!

// Read buttons S2 and S1 and return their state in the
// lower two bits of the return value such that
// ret = 0 0 0 0 0 0 S2 S1
unsigned char readButtonsLecture(void)
{

}

EEG'sftp.otlbitscyo

F copEI.EEFOR

SEEREADLAUNCHPADBUTTONSO
IN PERIPHERALSC IN

LAB Z TEMPLATE

ECE2049-E22 5-14

Polling
How can you monitor and use your properly-configured digital I/O functions?

• … by repeatedly checking if the button status has changed!
• Since this just involves reading a memory address, it is very fast to execute (on the order

of microseconds!)

Example:
// Inside your demo project...
while(1)
{
 ret_val = readButtons();
 setLeds(~retVal);
}

Another, similar example:
ret_val = 0x0f; // Default value for all buttons unpressed
while(ret_val == 0x0f)
{
 ret_val = read_buttons();
}

setLeds(~ret_val);

Without a delay, this loop executes in microseconds!

This process is called polling–we constantly check the buttons and do something when they
change.

At the moment, it's all the program needs to do, so it's fine. But what if we wanted to perform
more tasks? What if we wanted the processor to sleep while it was waiting?

