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2. BONUS (2 pts):  Fun with memory-mapped peripherals:  Say you are you using a different 
microprocessor that exposes the memory bus so that you can add new memory-mapped peripherals to it.  
Assume that you attach your peripheral device and that it has one 16-bit value that the CPU can read at 
address 0x1104.   
 
How would you write code to read the value at this address?  Like all register definitions in C, you can 
do this with a single #define statement.  Complete the definition below, which includes an example of 
how the register should be used.   

 
#define MY_REG   (/* Fill in your definition here! */) 
  
void main(void) 
{ 
 int val; 
 val = MY_REG; // Read the value of the peripheral at address 0x1104 
 
 // . . . 
} 
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Digital I/O Examples 
Example 1: Input and output registers 
Assume the following digital I/O pins are configured correctly. P3.1-0 are 
configured as inputs, and P3.7-4 are outputs.  
 
 
A Hypothetical Specification: 

Input:  Read a 2-bit binary value a on P3.1-0 
Output:  Given a, set P3.7-4 based on the table: 

 
 
 
  

Input Output 
      
!! !" "# "$ "! "" 

0 0 1 0 0 0 
0 1 0 1 0 0 
1 0 0 0 1 0 
1 1 0 0 0 1 
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Digital I/O Concepts:  Input or Output? 
How do you know if something is an input or an output? 
 

• If we are “reading” state from a hardware device, it is an input 
 

• If we are “writing” or “setting” the state of a device, it is an output 
 
 
Consider the LEDs on our board. Are they inputs or outputs? What logic level lights the LED?  

 
 
 
 
 
 
 
 
In an application program like our demo project, we use the digital I/O ports repeatedly to use 
the buttons and LEDs.  In these programs, it’s a good idea to wrap the functionality for hardware 
components into useful functions.   

See setLeds() in the demo project for an example! 
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Digital I/O Registers (cont.) 
 
Pull-up/Pull-Down Resistor Enable (PxREN) 
Activates pull-up or pull-down resistors when a pin is configured as a digital input. 
 
 
 
What controls whether to use a pull-up or pull-down resistor?  
The output register (PxOUT) is actually re-used for this purpose!   
Set the appropriate bits to 1 for pull-up resistors, and to 0 for pull-down. See p. 408 of the user's 
guide for details. 
 
 
You will also see one more Digital I/O register… 
 
Drive Strength (PxDS) 
Controls "drive strength", or amount of current that is sourced from the pin when used as 
an output. We will always use the default setting for this. 
Set to 0 = Reduced drive strength (default) Set to 1 = Full drive strength 
 
Important to note:  all I/O pins have limits on the amount of current that can pass 
through them (usually on the order of milliamps).  See the MSP430F5529 datasheet for 
details. 
 
As an embedded developer, it’s always important to remember the requirements of the 

hardware as well as the software! 
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Example:  Launchpad Buttons (cont.) 

 
We can configure these buttons as inputs and using pull-up resistors, as follows: 
void initButtonsLecture(void) 
{ 
 // Configure buttons as outputs using internal pull up resistors 
 // Button 1:  P1.1 
 P1SEL &= ~BIT1; 
 P1DIR &= ~BIT1; 
 P1REN |=  BIT1; 
 P1OUT |=  BIT1; 
 
 // Button 2:  P2.1 
 P2SEL &= ~BIT1; 
 P2DIR &= ~BIT1; 
 P2REN |=  BIT1; 
 P2OUT |=  BIT1; 
} 
Note that the buttons are on different ports, so we need to configure them separately!  
 
 
// Read buttons S2 and S1 and return their state in the  
// lower two bits of the return value such that 
// ret = 0 0 0 0    0 0 S2 S1 
unsigned char readButtonsLecture(void) 
{ 
 
 
 
 
 
 
 
 
} 
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Polling 
How can you monitor and use your properly-configured digital I/O functions?  

• … by repeatedly checking if the button status has changed! 
• Since this just involves reading a memory address, it is very fast to execute (on the order 

of microseconds!) 
 
Example:  
// Inside your demo project... 
while(1) 
{ 
    ret_val = readButtons(); 
    setLeds(~retVal); 
} 
 
Another, similar example:  
ret_val = 0x0f; // Default value for all buttons unpressed 
while(ret_val == 0x0f)  
{ 
    ret_val = read_buttons(); 
} 
 
setLeds(~ret_val); 
 
Without a delay, this loop executes in microseconds!  
 
This process is called polling–we constantly check the buttons and do something when they 
change.  
 
At the moment, it's all the program needs to do, so it's fine. But what if we wanted to perform 
more tasks? What if we wanted the processor to sleep while it was waiting?  


