
ECE2049

Embedded Computing in Engineering Design

E-Term 2020
Instructor: N. DeMarinis

Lecture Workbook

ECE2049-E20 1-1

Module 1. Intro to Number Representations

Topics

• How do we store (or “encode”) information in digital systems?

• Specifically: how do we store numbers?

First things first: Remembering Digital Logic

Before we can talk about how computing systems are built, we first need to talk about their basic

building block: digital logic. In digital logic, information is represented in binary bits.

Digital logic defines how we can process information using bits:

First things first: n bits differentiate among 2n things.

Terminology: 1 byte = 8 binary digits = 8 bits (e.g. 10010011)

 ½ byte = 1 nibble = 4 bits

 1 word = 2 (or more) bytes --> MSP430 word = 2 bytes

 1 double word = 2 words (4 bytes on MSP430)

In computers, information and memory space is organized in to multiples of bytes.

But what do the bytes mean?

ECE2049-E20 1-2

The meaning of bits and bytes assigned by convention!

>> Under a given coding convention, a byte can represent up to 28 = 256 things

For example, 1 byte (8 bits) could encode:

• A letter in an alphabet

• One or more decimal numbers

• The state of eight individual things (one per bit)

• An instruction that tells the CPU to do something:

We call these conventions encoding formats. They represent a kind of contract on how data will

be stored and used. As programmers, it is up to us to assign meaning to those bits—which

defines what operations we perform on them.

ECE2049-E20 1-3

Conversion between Bases and Formats: Binary

Positional Number Systems

We write numbers in a positional system, which can be defined as:

For binary numbers, we can write this definition as:

Unsigned integers = All bits used to convey magnitude (whole numbers > 0)

Decimal to Binary Conversion – Successive Division

Note: To differentiate numbers in different formats, we use notation to denote the radix used wo

write it. For binary: 10102 or 1010b; decimal: 101010 or 1010d (or just 1010)

ECE2049-E20 1-4

Hexadecimal: A common way to write binary numbers

Since working in binary can be cumbersome, we often write numbers in hexadecimal, which is

base 16.

 Simple rule for conversion:

 --> 1 Hex character represents values from 0 to 15d using digits 0 – Fh

 DEC BIN HEX | DEC BIN HEX

 0 0000 0 | 8 1000 8

 1 0001 1 | 9 1001 9

 2 0010 2 | 10 1010 A

 3 0011 3 | 11 1011 B

 4 0100 4 | 12 1100 C

 5 0101 5 | 13 1101 D

 6 0110 6 | 14 1110 E

 7 0111 7 | 15 1111 F

If you memorize anything in this class, memorize these!

Notation: Numbers in hex are written as 1010h or 0x1010

Conversion between hex and binary is piece of cake! Just convert each hex digit to a binary

nibble...

 1001 1110b = 158d

Or vice versa:

 8AC4h = 8 A C 4

Note: A modern computer always stores information in binary form. Writing in hex is just a

faster way for us to read and write these numbers—the machine’s representation is still binary.

Ex. 158d =

ECE2049-E20 1-5

How do we store negative numbers?

One way: Sign Magnitude integers = n-1 bits used to convey magnitude with “most

significant bit” or MSB used for sign. Convention: 0 = +, 1 = -

 Note: This format has 2 representations of 0 = +0 and -0 !

Another way: Two's Complement integers = More common format for signed integers. For n

bits, values range from -2(n-1) to 2(n-1)-1

How it works:

 Positive numbers: Follow same format as unsigned numbers

 1026 = 0000 0100 0000 0010b = 0402h

ECE2049-E20 1-6

 Negative numbers: Write magnitude, Complement each bit, Add 1

 -15 =

Range of Values for 2's Complement

0111 1111 1111 1111b

0111 1111 1111 1110b

. . .

0000 0000 0000 0000b

...

1000 0000 0000 0001b

1000 0000 0000 0000b

ECE2049-E20 1-7

Ex: Find the 8-bit two's complement representation of 104 and -80

Ex: What are the decimal equivalent values of these 2's complement values

 0010 0011b

 1000 0011b

ECE2049-E20 1-8

Ex: What decimal value does 8008h represent as an…

 (a) unsigned integer (b) 2's comp integer (c) sign-magnitude integer

ECE2049-E20 1-9

What about things that aren’t integers?

Characters

To handle letters and other displayable characters, we need an encoding format to describe how

we can represent these values in binary. One very common format for this is ASCII (American

Standard Code for Information Exchange), which defines a table of binary codes that represent

various characters.

Note: Other formats exists for representing different types of characters (alphabets and character

sets for all human languages, emoji, etc.). For information on this, see "Unicode".

Unicode Examples

Unicode Name Bit representation Character

U+00FC LATIN SMALL LETTER U WITH DIAERESIS C3 BC ü

U+1F602 FACE WITH TEARS OF JOY F0 9f 98 82

U+1F363 SUSHI F0 9F 8D 83

Non-integer Numbers

In future lectures we will talk about representing non-integer data. These are called fixed-point

and floating-point data types, which we will cover soon!

ECE2049-E20 1-10

Preview: How is data actually stored in a program?

C defines a set of standard data types to store information. Each datatype has a specific

representation, which depends on the compiler and the CPU architecture.

For the MSP430 architecture, the standard datatypes are defined as follows:

int a; // 16-bit two's-complement signed (2 bytes)

unsigned int b; // 16-bit unsigned integer (2 bytes)

long int c; // 32-bit signed integer (two's complement) (4 bytes)

char d; // 8-bit unsigned integer (1 byte)

float e; // 32-bit IEEE754 single-precision floating point value (4 bytes)

double f; // 64-bit IEEE754 double-precision floating point value (8 bytes)

Note that the types char, float, and double have the same size on all architectures–these are

part of the C standard.

We can use these standard datatypes to hold different kinds of information (signed/unsigned

numbers, characters, decimal values), or compose more complex types (like arrays or structs).

Important: The size and type of a variable define the range of values they can represent!

• The value of a variable CANNOT exceed the fixed size of the variable

• Variables will "overflow" or "roll over" if the value exceeds the variable size!

ECE2049-E20 2-1

Module 2. Data Representations & C Programming Basics

Topics for Today

• More on data representations

• C programming basics

Last Time

• Introduction and Policies

• Data representations for integers

Warmup: How many bits are in a byte?

ECE2049-E20 2-2

So how are variables actually stored?

Each datatype has a specific representation, which depends on the compiler and the architecture.

For the MSP430 architecture, the standard datatypes are defined as follows:

int a; // 16-bit two's-complement signed integer (2 bytes)

unsigned int b; // 16-bit unsigned integer (2 bytes)

long int c; // 32-bit signed integer (two's complement) (4 bytes)

char d; // 8-bit unsigned integer (1 byte)

float e; // 32-bit IEEE754 single-precision floating point value (4 bytes)

double f; // 64-bit IEEE754 double-precision floating point value (8 bytes)

Note that the types char, float, and double have the same size on all architectures–these are part

of the C standard.

Important: The size and type of a variable define the range of values they can represent!

• The value of a variable CANNOT exceed the fixed size of the variable

• Variables will "overflow" or "roll over" if the value exceeds the variable size!

Example: a char has a size of 8 bits (or one byte), and thus can hold values from

0 to 28 - 1 = 255.

What happens if we try to do the following?

char c = 253;

char a, h;

for(a = 0; a < 4; a ++) {

 h = c + a;

}

// As we run this:

// a = 0, h = 253

// a = 1, h = 254

// a = 2, h = 255

// a = 3, h = 0 <--- Rollover!

This is a very important takeaway about datatypes–you always need to make sure your

datatypes are appropriately sized for your application!

ECE2049-E20 2-3

Don't like how ints are different sizes on different architectures?

Yeah, me neither. And neither did the people who wrote later C standards. If you include

stdint.h, you can use datatypes that look like these:

#include <stdint.h>

uint8_t a; // Unsigned, 8 bit integer (aka char)

uint16_t b; // Unsigned 16-bit integer (aka unsigned int on the MSP430)

int16_t c; // Signed 16-bit (2's comp) integer

uint32_t d; // Unsigned 32-bit integer

int32_t e; // Signed 32-bit integer (2's comp)

// Similar types exist for 64 bit integers, and 128-bit on some

architectures...

You are welcome to use these in your labs!

Recall: Characters

One common format for representing characters is ASCII (American Standard Code for

Information Exchange), which defines a table of binary codes that represent various characters.

Example: in ASCII, the character the decimal value 68 (or 44h), represents the character 'D'.

In C, we can represent enter ASCII characters using 'single quotes', like so:

char a = 'D'; // Assigning c to the character value of 'D'

// This is the same as writing

char a = 68;

// or

char a = 0x44;

Note: Other formats exists for representing different ranges of characters (like other alphabets,

emoji, etc.). For information on this, see "Unicode".

ECE2049-E20 2-4

C Programming for Embedded Systems

Rule #1: a program will always do exactly what you tell it to do!

Here is an example of a simple C program:

#include <stdlib.h>

void main(void) {

 float degF, degC, degK;

 degF = 45.7;

 degC = 5.0 * (degF - 32.0) / 9.0;

 degK = degC + 273.15;

}

What does this code do? Is it correct? Is it useful?

Terminology: Compilation Process

When you write a C program and build it, the compiler and linker are responsible for turning

your code into machine instructions that the MSP430 can execute and arranging your variables,

code, and definitions in the program's memory. The output of the compilation process is an

executable that runs on the MSP430.

Compiler:

Linker:

Why is it important to know these terms? They will help you debug compilation problems!

ECE2049-E20 2-5

Basic data types

Our MSP430 compiler users the following sizes for basic data types:

int a; // 16-bit two's-complement signed integer (2 bytes)

unsigned int b; // 16-bit unsigned integer (2 bytes)

long int c; // 32-bit signed integer (two's complement) (4 bytes)

char d; // 8-bit unsigned integer (1 byte)

float e; // 32-bit IEEE754 single-precision floating point value (4 bytes)

double f; // 64-bit IEEE754 double-precision floating point value (8 bytes)

One of your first tasks when writing a program is creating variables of suitable size for your

problem!

Declaring variables
int x; // Reserve space for an int. What is x's value?

char z = 5; // Store 5 in 8-bit

char array[10]; // Make space for 10 bytes

int ints[5] = {1, 2, 3, 4, 5}; //Initializing an array

Arithmetic Operators

If you've seen C before, you have used these.

Arithmetic Operators: + - * / % (% == Modulo, or the "Remainder operator")

int x, y, z, u;

float a;

u = (x + z) * y / z; /* y / z is the integer part of the division—truncation!*/

z = 47;

y = z / 10;

x = z % 10;

ECE2049-E20 2-6

Casting is a way to change type of a variable. The compiler will add the appropriate routines to

convert a variable from one representation to another for you.

// Let's say we want to divide an integer to get a

// decimal result?

float a;

int z = 47;

a = ((float)z)/10.0; // a = 4.7

Unary and assignment operators: += – += -= *= /=

These operators are shorthand (also called "syntactic sugar") for other operations:

i++; // i = i + 1

j--; // j = j - 1

i += 2; // i = i + 2;

k *= 4; // k = k *4;

(These operators are called unary because they only take a single argument (eg, a += 5), as opposed to

binary operators, which use two arguments (eg. a + b)

More shorthand with increment/decrement operators:

i = 5;

arr[i++] = 4;

Be careful with these!

Logical and Relational Operators

Logical operators, such as produce a Boolean result (true or false).

But how are Booleans represented in C?

ECE2049-E20 2-7

Relational Operators: >, >=, <, <=, ==, !

These operators return a Boolean (1 or 0) result:

if (x > y) {

 z = z - x;

} else {

 x = z - y;

}

while(x != 0) {

 // ...

}

while(z < 5) {

 // ...

}

while(count) {

 count--;

 // . . .

}

Logical Operators: && (AND), || (OR), == (EQUAL), ! (NOT)

if ((j == 0) || (x < 100)) {

 // ...

}

canContinue = 1;

while((i < 5) && (canContinue)) {

 // ...

 canContinue = 0;

}

ECE2049-E20 2-8

Bitwise Operators

In systems-level (and embedded) programming, we often need to operate on individual bits of a

variable.

Bitwise Operators: & (AND), | (OR), ~ (NOT), ^ (XOR),

>> (Right shift), << (Left shift)

These operators operate on each bit of the data type (hence, bitwise):

char a = 0x85; // 1000 0101b

char b = 0xF0; // 1111 0000b

char k = a & b;

char m = k >> 2;

char c = ~b;

ECE2049-E20 2-9

Control flow

If/else statements (also called “Conditionals”)

Used for making decisions:

if (k > 100) {

 k = 0;

} else {

 k += 1;

}

Alternate form for small statements, the conditional operator (also known as the ternary

operator):

k = (k > 100) ? 0 : k + 1;

You can also have many conditional blocks:

if(x > 0) {

 y++;

 doSomething(x, y);

} else if ((x > 0) && (y != 2)){

 y = 100;

 // ...

} else if(x > 100) {

 // ...

} else {

 // ...

}

NOTE: Brackets around your if/else statements (or loops) are not required, but you should

always use them!

ECE2049-E20 2-10

Switch/Case statements
x = getValue();

switch(x)

{

case 1: // if x == 1

 doSomething(x, y);

 y = 0;

 break; // Must have these at the end of each case. Why?

case 2: // if x == 2

 doSomethingElse();

 break;

case 12: // if x == 12

 doSomeOtherThing();

 break;

default: // For all other values

 break;

}

Case statements can be useful for making decisions about a single value. They can also be useful

for implementing complex control structures like state machines, which we will discuss later.

Loops

While loops

Can use to iterate over a set of values:

i = start_value;

while(i < end_value) {

 /* Body of loop */

 // ...

 i++;

}

Example: How many times will the body of the loop execute?

int a = 32;

while(a > 0) {

 // . . .

 a = a – 8;

}

ECE2049-E20 2-11

Can also use a while loop to wait for something:

int data_is_ready = 0;

while(data_is_ready != 0) // Stay in loop until data is available

{

 data_is_ready = get_data();

}

// After the loop, use the data

do_stuff_with_data();

For loops

For loops are a different syntax for a simple while loop (like the first example):

int i;

for(i = start_value; i < end_value; i++)

{

 /* Body of loop */

}

Break and Continue

The break keyword will exit the current loop. The continue statement will skip the rest of the

current iteration and start the next one.

int i;

int data[100];

for(i = 0; i < 100; i++)

{

 if(check_input(arr[i]) == -1) {

 break;

 }

 do_thing(arr[i]);

}

// . . .

int i;

int data[100];

for(i = 0; i < 100; i++)

{

 if(check_input(arr[i]) == -1) {

 continue;

 }

 do_thing(arr[i]);

}

// . . .

ECE2049-E20 2-12

The "forever" loop

Infinite loops are not often desirable in programs. However, embedded programs use them all

the time in certain circumstances, like your main function.

void main(void)

{

 /* Initialize variables, do setup tasks */

 while(1){

 // Perform tasks that your device needs to do!

 }

}

We will discuss more about how to write programs using this paradigm later.

ECE2049-E20 2-13

More Data Representations

Arrays

Arrays are contiguous group of a certain data type, stored sequentially:

// Declare an array of 10 ints

int a[10];

// Initialize an array

int arr[4] = {1, 2, 3, 4};

// “Indexing” an array

int a0 = arr[0];

int a1 = arr[1];

int a_last = arr[3];

int *arr_ptr = arr; // Name of array is pointer to its first element

Strings

In C, we can also define arrays of characters using "double quote", which make up groups of

displayable characters.

Convention: C-style strings (or “null-terminated strings”): arrays of ASCII characters followed

by a special byte called a null-terminator (which has value 0x00, usually written as ‘\0’).

When you type a string in “double quotes,” a null-terminator is automatically included.

The null terminator is used to tell functions that operate on strings when it reaches the end of the

string.

For example, we can represent the string "ECE2049" as follows:

char *str = "ECE2049"; // The string "ECE2049"

// This is the same as writing out each character in array form

char str[8] = {'E', 'C', 'E', '2', '0', '4', '9', ‘\0’};

// Or we could write out each character in decimal or hex.

char str[8] = { 'E', 'C', 'E', '2', '0', '4', '9', ‘\0’};

char str[8] = {0x45, 0x43, 0x45, 0x32, 0x30, 0x34, 0x39, 0x00};

// All have the same meaning, we are just entering them differently!

We will discuss strings in more detail later, but you should know that they exist since you will

see them in lab. You should also know about the existence of null terminators.

ECE2049-E20 2-14

Pointers

A pointer gives the location of something of in program memory—this is also known as a

memory address. We will discuss pointers in further detail later.

Complex data: structs

We can define complex data types called structs, which are composed of other data types:

// Defining a struct

struct point {

 int x;

 int y;

};

// Declaring variables of type “struct point”

struct point p1;

struct point p2;

// Setting and accessing members of a struct

p1.x = 5;

p1.y = 2;

// . . .

int z = p1.x + p2.x;

We will discuss these in more detail soon.

Data representations: Would you like to know more?

In the next segment, we will talk even more about data representations!

• Representing fractional numbers: fixed-point and floating point

• Machine code: the compiler turns your C code into a binary format to create instructions

the CPU can understand

ECE2049-E20 2-15

Program structure in C

In C (as in other programming languages), you can separate your programs into a series of

smaller functions to complete certain tasks.

#define MAX_BUTTONS (4) // Constant for the number of buttons on the board

int some_value; // Global variable (visible to whole program)

// Function prototypes

int check_button(char button_id);

void set_led(char led_id);

// Function definition

int check_button(int button_id)

{

 int button_state = 0; // Local variable for this function

 // ...actual function body goes here...

 return button_state;

}

// Need to implement other functions too!

void main(void)

{

 // Variables local to main

 int i, button;

 while (1)

 {

 for(i = 0; i < MAX_BUTTONS; i++) {

 int button = check_button(i);

 if(button == 1) {

 set_led(i);

 }

 }

 // Do other things.. perhaps wait for a while?

 }

}

ECE2049-E20 3-16

Module 3. Of Integers and Endians & Floating Point

Representations

Topics

• Memory organization and endianness

• More data representations: overview of floating point

Last Time

• C programming basics

• Data representations for characters

Warmup: try the following…

int z = 0x4007;

// a. What is the size of z (in bytes)?

// b. In C, how is z stored (unsigned, sign-magnitude, 2’s comp)?

if (z & 0x8000) {

 alpha();

} else {

 beta();

}

// c. Based on the value of z, which function would get called?

ECE2049-E20 3-17

Memory organization

What does it mean to type “int a” in C? This is called variable declaration, which allocates

space in the program's memory to store an int.

What do we mean by memory? You can think of memory as a big table of "addresses" that each

map to a certain piece of data. This data could be a variable (as above), or it could be a piece of

code, a portion of the hardware, etc., but for now let's focus on variables.

On the MSP430, addresses are 16-bits long, and each address refers to one byte.

Recall that the MSP430 is a 16-bit architecture,

Unfortunately, this is no longer completely true! Newer MSP430 variants (like ours

MSP430F5529) utilize 20-bit addresses. Why?

ECE2049-E20 3-18

Laying out variables in memory

When you declare variables in your program, they are arranged in memory starting at a certain

address. For now, it is sufficient to know that variables in main start at address 0x4400. We will

discuss why in an upcoming lecture.

When variables are declared, they are (usually) arranged in order from this starting address.

For example:

char a = 0x11;

char b = 0x22;

…can be arranged in memory as follows:

Address Data Variable

In our class, we will arrange memory in a table like the one above, with the starting address at

the bottom. We use this convention because we are typically representing variables on the

program stack, which starts at a fixed base address and grows up.

ECE2049-E20 3-19

Endianness: Ordering bytes

In the previous example, we have left out an important detail. How do you store variables that

are larger than a byte?

As declared on the MSP430, a long is has a size of four bytes:

long v = 0xAABBCCDD; // AAh is the most significant byte (MSB), and

 // DDh is the least significant byte (LSB)

For multi-byte variables, we have a choice–do we arrange the data with the least significant byte

first, or with the most significant byte first? Which is correct? Does it matter?

This concept is known as endianness, which governs how a processor orders bytes in memory.

There are two forms of endianness:

Little Endian (LE)

 Little Endian stores the least significant byte first, meaning that the memory in this example

would be arranged as follows:

Address Data Variable

0x4403 AA

V
0x4402 BB

0x4401 CC

0x4400 DDh

Big Endian (BE)

 Big Endian stores the most significant byte first, as follows:

Address Data Variable

0x4403 DD

v
0x4402 CC

0x4401 BB

0x4400 AAh

ECE2049-E20 3-20

Important points on endianness

• Endianness is a fundamental part of the architecture's design. When a processor is

designed, it is designed to use a specific byte order–you cannot change this with a

compiler setting.

• Is one endianness better than the other? No, they simply reflect different design choices.

• Big endian is read "left to right", which is intuitively easier to read for those accustomed

to languages written left to right

• Little endian makes it easier to slice out small portions of a variable (eg, what if you only

want the first byte of a long?)

When will you deal with endianness?

Endianness becomes especially important when you need to transfer data between different

architectures. Examples include any stored data format or network protocol.

ECE2049-E20 3-21

More memory layout: Arrays

How do arrays work, anyway?

In C, we can declare arrays and use them as follows:

// Declare an array of 5 bytes

char arr[5];

// Declare an array of 5 bytes, and initialize it (set it with some initial values)

char arr[5] = { 0xAA, 0xBB, 0xCC, 0xDD, 0xEE };

// You can access elements of an array by "indexing" into it

// In C, array indexes start at 0

char c = arr[0]; // The first element

char d = arr[4]; // The last element (arr has size of 5, so last index is 5 - 1 = 4

You can think of the elements of the array laid out like this:

Index 0 1 2 3 4

Element

Value

Why is it important that array elements are contiguous? (And must contain elements of the

same type?)

What would happen if we tried to get the 6th element of arr?

ECE2049-E20 3-22

How endianness affects arrays (or rather, how it does not)

A fundamental property of arrays is that their elements are stored contiguously in memory in

order of their index (as discussed above).

Endianness does not change the order of array elements.

For example, if we laid out the array from the above example on a Big Endian (BE) and a Little

Endian (LE) system, it would look like this:

Address BE LE

0x4404

0x4403

0x4402

0x4401

0x4400

However, endianness does affect the ordering of the bytes in each element of the array! In the

previous example, the elements were just 1 byte each!

Example: an array of ints:

int iarr[2] = {0x1122, 0x3344};

Here, the memory would be organized as follows:

Address BE LE

0x4403

0x4402

0x4401

0x4400

ECE2049-E20 3-23

Using addresses as data

We can also have variables that contain memory addresses. These are called pointers.

You can get the address of a variable with the “address-of” operator (&):

long v = 0x11223344;

long *pv = &v;

In this example, we say that pv is declared as the type “pointer to long,” which is indicated by

the “*” before the name pv.

How big is pv?

,

What is the value of pv?

We can lay out these variables in memory as follows:

Address BE LE

0x4405

0x4404

0x4403

0x4402

0x4401

0x4400

ECE2049-E20 3-24

How big is a pointer?

A pointer is the size of a memory address for a given architecture. On the MSP430, an address

has a size of 2 bytes (16 bits).

Type Size (bytes)
int
long
char
long long

Type Size (bytes)
int *
long *
char *
long long *

This is one way in which pointers are powerful: a pointer can represent a larger data structure in

the program—by passing around the pointer, we can avoid copying or moving the larger data

structure.

How are pointers used with arrays?

Whenever you use arrays, you use pointers. Consider the following example:
int iarr[10];

int i = iarr[5];

When you index into an array, the program actually does the following:

int i = *(iarr + 5); // Equivalent to writing iarr[5]

Here, the * is the dereference operator, which gets the value at the given address. This is

called dereferencing the pointer—it is the opposite of the address-of (&) operator.

ECE2049-E20 3-25

Working with Pointers

Pointer math: When performing arithmetic operations on pointers, the address changes in

increments based on the type of the pointer.

// Example 1: array of char

char carr[4];

// How big is the array?

// Say the starting address is 0x4400, what is the address of carr[3]?

// Example 1: array of int

int carr[4];

// How big is the array?

// Say the starting address is 0x4400, what is the address of iarr[3]?

Passing arrays: Further, when you use the name of an array (either to store or pass to a

function), you are passing a pointer to the first element of the array. This is the “starting point”

of the array used as input to calculate the index.

int *ptr = iarr; // Could also write &iarr[0]

do_thing(iarr, 10); // Same here

void do_thing(int* arr, int size) { // Function takes pointer to array (+ size)

 // . . .

}

ECE2049-E20 3-26

Memory organization example

Here's a larger example of memory organization. How would we organize the following

variables?

unsigned int a = 0x00FF;

long int b[2] = { 65540, -5 };

char c = 'c'; // 'c' = 0x43

How many bytes of memory do we require?

ECE2049-E20 3-27

So using the above information, we can make our table:

Address BE LE

0x440C

0x440B

0x440A

0x4409

0x4408

0x4407

0x4406

0x4405

0x4404

0x4403

0x4402

0x4401

0x4400

ECE2049-E20 3-28

How do you represent fractional numbers in binary form?

So far, we have only expressed integer values in binary. There are two conventions for

representing fractions: fixed point and floating point.

Fixed Point

In a given data type, we can define a binary "radix point", which is a fixed point that denotes

fractional bits.

In this format, the precision of the number is defined by the number of fractional bits.

For example, 4 fractional bits = 2(-4) = 0.0625 is the smallest fraction you can represent

Often, fixed-point representations are stored in scaled form as integers–it's up to you (the

programmer) to treat them as fixed-point values.

ECE2049-E20 3-29

Floating Point

Floating point is an IEEE standard used to approximate real-valued numbers to a certain number

of decimal places.

There are two forms, single precision (32 bits) and double precision (64 bits). Each

representation has three components:

• A sign bit (S)

• An exponent (E)

• A fractional part (F), which is also called the "mantissa" or "significand"

Format for single precision: S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

Exponent is 8 bits, fractional part is the remainder (23 bits)

Value = (-1)S * 2(E-127)*(1.F)

Example: Floating point to Decimal

What is the decimal equivalent of the floating point variable CAAA0000h?

ECE2049-E20 3-30

Some features of floating point:

• Effective range: approximately +/- 1038

• Single precision has ~7 decimal digits of precision

o Double precision and others have more

• Special representations for +/- infinity, NaN

• Standard has conventions for rounding, normalization, etc.

Example: Decimal to floating point

Represent -5.375 as a single-precision floating-point number.

ECE2049-E20 4-1

Module 4. MSP430 Architecture & Intro to Digital I/O

Topics

• Getting to know the MSP430 Hardware

• Start of Digital I/O

Last Time

• Memory Organization

• Floating point format

ECE2049-E20 4-2

Getting to know the MSP430 Hardware

In a programming course, typically you focus on just the code:

• Learn a high level programming language and some algorithms

• Use a "computer" from a high level

A typical program does three things:

A few common points for all kinds of software:

• Use constructs like loops, conditional, algorithms like search, sort, data structures

• Software: write logic and syntax correctly and it will just work

• Library functions for I/O

... but what's inside the "computer"? How does it work? When you are writing in a high level

programming language, do you care?

In contrast, developing software for embedded requires much more in depth knowledge about

the microprocessor that is the target of your program. For instance, it's important to know:

ECE2049-E20 4-3

A general software hierarchy

We can think of the software components in a system and the way they interact with the hardware as a

hierarchy or software stack:

A general computing device (PC) might have a software hierarchy like this:

Applications

Operating System

(Includes user interface)

System Software: Interface to hardware

Hardware (CPU, Memory, Peripherals)

On an embedded system, this stack gets “squashed”:

Application

System software / OS

Hardware (CPU, Memory, Peripherals)

• Application is closely integrated with the hardware layer

• Little or no operating system–usually only runs one task or a set of tasks

• Often little or no "wrapping" of functionality

• On larger systems, you may use a Real Time Operating System (RTOS) that provides

some basic support for multitasking…

ECE2049-E20 4-4

A general microprocessor hardware architecture

In general, any microprocessor system has the following components:

CPU (Central Processing Unit)

The "core" of the computer

Memory

Stores information

Peripherals

ECE2049-E20 4-5

How does the CPU work?

The CPU executes machine code, which are low-level instructions directly run by the

hardware. Machine code is a binary format seen by the CPU.

• Instructions perform very specific tasks

• Instruction set (ISA) is different for every CPU type (MSP430, ARM, x86, …)

• Compiler is responsible for figuring out how to build all programs using these

instructions!

We will never write in assembly in this class. However, it is important that you understand that

these instructions exist!

CPU instructions operate on…

• Internal Registers: 16 general purpose registers (R0-R15)

o Storage locations inside the CPU used for recent instructions

All registers are 16-bits wide (except R0 and R1, which are 20 bits)

o Can be accessed very quickly (one clock cycle)

o Some registers control program execution

(R0 = Program counter, R1 = Stack pointer, R2 = Status register)

• Memory: Instructions read from and write to memory

o Load and store data from the outside world using the memory bus!

ECE2049-E20 4-6

What goes in memory?

Remember that memory doesn't just store your variables–it stores the program's code as well!

• The CPU needs to load both code and data from memory

There are two generic types of memory architectures used by microprocessors and

microcontroller systems:

• Von Neumann Architecture (~1952)

• Harvard Architecture (~1944)

Harvard Architecture: Separate memory address spaces for code and data

Benefits: Instruction fetch and data read happen in parallel

Drawbacks: Separate instruction and data buses

In this form, the Harvard architecture is used today by highly-pipelined systems like DSP chips.

Von Neumann Architecture: Single memory address spaces for code and data

Benefits: Single address and data buses (simpler to interface)

Drawbacks: Implicit bottleneck since we have the same pipeline for code and data

ECE2049-E20 4-7

The MSP430 Architecture

The MSP430 is a family of microcontrollers–there are hundreds of versions of this CPU with

various configurations of memory and peripherals!

• You can think of it as a type of System on a Chip (SoC)

In our labs, we use the MSP430F5529

• 128KB of flash memory: Used for code storage

• 8 KB of RAM (+ 2KB RAM for USB controller): Used for data storage

• Lots of peripherals

o 32 bit multiplier

o Timers, comparator, USB controller

o Much, much more!

How much more? Here’s a block diagram:

Note the lines connecting all of the peripherals: this is the memory bus!

MAB: Memory Address Bus

MDB: Memory Data Bus

ECE2049-E20 4-8

MSP430 Memory Organization

Memory: A group of sequential locations where binary data is stored

• On the MSP430, each memory location holds one byte

• Each byte has a unique address which the CPU uses to access it

• Multibyte data is stored in ________ Endian!

Two types of memory: Volatile and Non-Volatile

RAM (Random Access Memory)

• Our MSP430 has 8KB of RAM + 2KB for USB

• RAM is volatile, meaning that it loses its state when the chip is not powered

• Used as data memory

• Accessed via read and write instructions

Flash

• Used primarily for code memory

• Flash is non-volatile, meaning that its state persists even if the chip is not powered

• CPU fetches code from flash automatically

• Accessed via program control, but more difficult than RAM

o Write time >> Read time

o Writes must occur in large segments (512 bytes)

ECE2049-E20 4-9

How are programs stored in memory?

When a program is compiled, the linker arranges different portions into various memory

segments, which are stored in different contiguous memory regions. The most important

segments are:

• The stack (.stack): Stores local variables and context information on each function call

• Constant data (.data, .bss): Stores global variables and other constant data (strings,

lookup tables, etc.

• Text (.text): Compiled code for your program (code you write + libraries)

• Heap: Dynamically allocated memory (avoid using this!)

When compiling, the linker reads a script called a command file, which maps each section to a

memory device. Usually, most code is stored in flash, while most data goes in RAM, though it

may be necessary to adjust these requirements. Why?

Why should we avoid dynamically allocated memory?

ECE2049-E20 4-10

Memory architecture and layout

The MSP430 is a 16-bit microcontroller, meaning that:

• The data bus is 16 bits wide

• Internal CPU registers are 16-bits

Note: MSP430 '5xxx and '6xxx families use a 20 bit address bus to allow access to at most

1MB of memory.

However, memory isn’t just one big block….

ECE2049-E20 4-11

Mapping Memory

In practice, the “memory space” is mapped across the different types of memory and hardware

devices connected to the CPU.

• This includes the different types of physical memory (RAM, flash), as well as hardware

peripherals

• The mappings of which components use which addresses is based on the physical wiring

in the IC (we know the mappings based on the header files)

ECE2049-E20 4-12

The Memory Map (found in MSP430F5529 datasheet)

What can we learn from this?

• RAM starts at 0x2400, implemented in 2KB "Banks"

• Flash uses the address range 0x4400 to 0xFFFF

o Code is written to flash starting from this address

• What about addresses 0x0010-0x0fff?

ECE2049-E20 4-13

So what’s the deal with addresses 0010h-0FFFh again?

These addresses are assigned to peripherals:

• Each peripheral has its own registers that are mapped as part of the memory that the CPU

can access

• CPU can read or write data to peripherals just like any other memory address

This is how you make the CPU do I/O!

ECE2049-E20 4-14

Input and Output

Consider this C code for a general-purpose system:

#include <stdio.h>

void main()

{

 char inKey = '-'; // declare variable named inKey

 // and initialize to ASCII '-'

 while (inKey != 'X');

 {

 /* get character from keyboard */

 inKey = getchar();

 /* display character entered on screen */

 putchar(inKey);

 }

}

What is really happening here?

getchar() and putchar() are functions from the C standard library (part of stdio.h)

• Library for these functions is part of OS, and linked into code during build process

• These functions have always been part of the standard library because general purpose

systems have always needed to use this type of I/O (eg. keyboard, screen, …)

Example: When a key is pressed, several layers below our little application, a byte has been

placed on the microprocessor’s data bus from a port connected to the keyboard:

ECE2049-E20 4-15

Digital I/O: The Basics

Why do we use Digital I/O anyway?

Digital I/O is a method of directly inputting our outputting logic levels to the pins of the

MSP430 Package.

You can use this functionality to implement almost anything!

• Simple devices: Buttons and LEDs

• Control signals for complex peripherals

• … and more!

Fun Facts about Digital I/O

• Eight independent, individually-configurable ports

• Ports 1-7 each have 8 configurable pins, and are thus 8 bits wide; Port 8 is 3 bits wide

• Each pin of each port can be configured individually as input or output

o What makes something an input or an output? Inputs are devices from which you

read a state, outputs require you to write a state to it.

• Ports 1 and 2 can generate interrupts on certain events, which are control signals that can

be accepted or ignored by the MSP430

o We will discuss these soon!

• Each port is controlled by six single-byte registers

• All the I/O port registers are memory-mapped, meaning that each register associated with

a digital I/O port has a unique address in memory

o How do you know what the addresses are? These are defined in msp430.h and

msp430f5529.cmd. In these files, each register is given a specific name.

• Many more fun facts can be found in the User’s Guide!

ECE2049-E20 4-16

Digital I/O Registers (Part 1)

Each Digital I/O port has six registers to control its features. We will start by discussing three of

them:

Direction Register (PxDIR)

Sets port pins as Input or Output

Set to 1 = Output

Set to 0 = Input

Input Register (PxIN)

Output Register (PxOUT)

The other registers are:

• Function Select Register (PxSEL)

• Drive Strength (PxDS)

• Pull-up/Pull-Down Resistor Enable (PxREN)

We will discuss these (using examples) later.

Conceptually, once you know which registers to use, using Digital I/O is pretty simple–all you

need to do is read or write the desired values to the registers.

ECE2049-E20 4-17

Digital I/O Concepts: Input or Output?

How do you know if something is an input or an output?

Consider the LEDs on our board. Are they inputs or outputs? What logic level lights the LED?

ECE2049-E20 4-18

Example: Buttons

Consider the buttons on the Launchpad board:

Are the buttons inputs or outputs? Inputs! We "read" values from them.

Consider S1. What logic level indicates the button is pressed? What about when it is unpressed?

ECE2049-E20 5-1

Module 5. Digital I/O

Topics

• More Digital I/O

About Digital I/O

Why do we use Digital I/O anyway?

Digital I/O is a method of directly inputting our outputting logic levels to the pins of the

MSP430 Package.

You can use this functionality to implement almost anything!

• Simple devices: Buttons and LEDs

• Control signals for complex peripherals

• … and more!

ECE2049-E20 5-2

Fun Facts about Digital I/O

• Eight independent, individually-configurable ports, named P1-P8

• Ports 1-7 each have 8 configurable pins, and are thus 8 bits wide; Port 8 is 3 bits wide

Pins are referenced as P<port>.<pin>, eg. P1.4.

• Each pin of each port can be configured individually as input or output

• Most digital I/O pins share physical package pins with some other function on the device.

This is called pin multiplexing.

• Each port is controlled by six single-byte registers

What is a register, anyway?

Register:

• Registers have addresses just like standard memory, so you can read and write to them

• Provide interface between hardware and software:

o Reading from a register can get information about the hardware

o Writing to a register can change how the hardware is configured, or send

information to a component

• Functionality provided is defined by the hardware’s design. When TI designs the

MSP430, they define what registers are exposed to the programmer, which defines the

functionality available on the chip.

• All the I/O port registers are memory-mapped: each register associated with a digital I/O

port has a unique address in memory

o How do you know what the addresses are? These are defined in the MSP430F5529

datasheet, as well as msp430.h and msp430f5529.cmd

ECE2049-E20 5-3

Pins on the Microcontroller

Microcontrollers often pack lots of functionality in a small IC. However, the usage of all this

functionality is limited by the physical pins on the IC package:

In order to maximize the usage of physical pins, most physical pins (also called “package pins”)

are shared between multiple device functions.

ECE2049-E20 5-4

Digital I/O Registers

The 6 registers controlling the digital I/O ports are as follows. Each bit of the register controls

the state for a specific pin.

Function Select Register (PxSEL)

Selects the port pin for Digital I/O–remember multiplexing? This selects the function used

on the pin.

Direction Register (PxDIR)

Sets port pins as Input or Output

Set to 1 = Output

Set to 0 = Input

Input Register (PxIN)

This is where the value input on the port appears (this is where you "read" the port)

Output Register (PxOUT)

This is where data to be output on the port should be "written"

Drive Strength (PxDS)

Pull-up/Pull-Down Resistor Enable (PxREN)

We will discuss these two (using examples) later.

Conceptually, once you know which registers to use, using Digital I/O is pretty simple–all you

need to do is read or write the desired values to the registers.

ECE2049-E20 5-5

Important Background: Bitwise manipulation

Because each bit in a register can control a different pin, we will make extensive use of C's

bitwise operators (&, |, ~) to manipulate registers.

This is a very common practice when interacting directly with hardware!

Recall the truth tables for the bitwise operators AND (&), OR (|) and NOT (~):

A B Z = A & B

0 0

0 1

1 0

1 1

X Y Z = A | B

0 0

0 1

1 0

1 1

A C = ~A

0

1

Where “X” is either 0 or

From these operators, we can build a set of techniques for individually controlling specific

bits in a variable while leaving the others unmodified.

Common operations using bitwise operators

Setting individual bits to 1

We can do this by OR'ing a specific bit (or bits) with a 1. This is called "setting" a bit.

Setting individual bits to 0

We can do this by AND'ing a specific bit (or bits) with a 0. This is called "clearing" a bit.

ECE2049-E20 5-6

"Selecting" specific bits from a variable

It is often necessary to check if certain bits of a field are set, or to only take the value of certain

bits from a variable. We can do this by AND'ing a variable with only those bits that interest us

set to 1–this is called masking bits.

You will use these techniques very frequently when working with digital I/O:

ECE2049-E20 5-7

Configuration Example

Example: Configure Port 3 for Digital I/O with pins 1 and 0 as inputs and pins 7-4 as outputs.

There are two ways we can approach this problem:

ECE2049-E20 5-8

An even better way: Lose the "magic numbers"

In this lecture, it's clear what the constants 0xF0 and 0xFC mean, but will you remember what's

happening here 6 months from now? Probably not.

In C, as in many programming languages, it's good practice to avoid magic numbers, or hard

coded numbers that appear in the code without explanation of their meaning or purpose. Instead,

we can use constants to attach meaning to these values and allow them to be reused.

In this case, a set of constants for the individual bits are defined for us, we can just use them:

Name Hex Binary Name Hex Binary
BIT0 0x01 0000 0001b BIT4 0x10 0001

0000b

BIT1 0x02 0000 0010b BIT5 0x20 0010

0000b

BIT2 0x04 0000 0100b BIT6 0x40 0100

0000b

BIT3 0x08 0000 1000b BIT7 0x80 1000

0000b

We can also combine these constants to refer to more than one bit:

ECE2049-E20 5-9

Digital I/O Examples

Example 1: Input and output registers

Assume the following digital I/O pins are configured correctly. P3.1-0 are

configured as inputs, and P3.7-4 are outputs.

A Hypothetical Specification:

Input: Read a 2-bit binary value a on P3.1-0

Output: Given a, set P3.7-4 based on the table:

Input Output

𝑎1 𝑎0 𝑧3 𝑧2 𝑧1 𝑧0

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

ECE2049-E20 5-10

Digital I/O Concepts: Input or Output?

How do you know if something is an input or an output?

• If we are “reading” state from a hardware device, it is an input

• If we are “writing” or “setting” the state of a device, it is an output

Consider the LEDs on our board. Are they inputs or outputs? What logic level lights the LED?

In an application program like our demo project, we use the digital I/O ports repeatedly to use

the buttons and LEDs. In these programs, it’s a good idea to wrap the functionality for

hardware components into useful functions.

See setLeds() in the demo project for an example!

ECE2049-E20 5-11

Dealing with Inputs

As we discussed briefly last lecture, inputs may require some special handling.

Consider the buttons on the Launchpad board:

ECE2049-E20 5-12

Digital I/O Registers (cont.)

Pull-up/Pull-Down Resistor Enable (PxREN)

Activates pull-up or pull-down resistors when a pin is configured as a digital input.

What controls whether to use a pull-up or pull-down resistor?

The output register (PxOUT) is actually re-used for this purpose!

Set the appropriate bits to 1 for pull-up resistors, and to 0 for pull-down. See p. 408 of the user's

guide for details.

You will also see one more Digital I/O register…

Drive Strength (PxDS)

Controls "drive strength", or amount of current that is sourced from the pin when used as an

output. We will always use the default setting for this.

Set to 0 = Reduced drive strength (default) Set to 1 = Full drive strength

Important to note: all I/O pins have limits on the amount of current that can pass through them

(usually on the order of milliamps). See the MSP430F5529 datasheet for details.

As an embedded developer, it’s always important to remember the requirements of the

hardware as well as the software!

ECE2049-E20 5-13

Example: Launchpad Buttons (cont.)

We can configure these buttons as inputs and using pull-up resistors, as follows:
void initButtonsLecture(void)

{

 // Configure buttons as outputs using internal pull up resistors

 // Button 1: P1.1

 P1SEL &= ~BIT1;

 P1DIR &= ~BIT1;

 P1REN |= BIT1;

 P1OUT |= BIT1;

 // Button 2: P2.1

 P2SEL &= ~BIT1;

 P2DIR &= ~BIT1;

 P2REN |= BIT1;

 P2OUT |= BIT1;

}

Note that the buttons are on different ports, so we need to configure them separately!

// Read buttons S2 and S1 and return their state in the

// lower two bits of the return value such that

// ret = 0 0 0 0 0 0 S2 S1

unsigned char readButtonsLecture(void)

{

}

ECE2049-E20 5-14

Polling

How can you monitor and use your properly-configured digital I/O functions?

• … by repeatedly checking if the button status has changed!

• Since this just involves reading a memory address, it is very fast to execute (on the order

of microseconds!)

Example:

// Inside your demo project...

while(1)

{

 ret_val = readButtons();

 setLeds(~retVal);

}

Another, similar example:

ret_val = 0x0f; // Default value for all buttons unpressed

while(ret_val == 0x0f)

{

 ret_val = read_buttons();

}

setLeds(~ret_val);

Without a delay, this loop executes in microseconds!

This process is called polling–we constantly check the buttons and do something when they

change.

At the moment, it's all the program needs to do, so it's fine. But what if we wanted to perform

more tasks? What if we wanted the processor to sleep while it was waiting?

ECE2049-E20 6-1

Module 6. Review: The Story So Far

Writing Numbers

Be comfortable with standard conventions for writing numbers used in class and in C:

• Decimal: 42

• Hex: 0x2A or 2Ah

• Binary: 0010 1010b

You should be able to convert from binary to hex easily (and vice versa)!

Basic C Instructions and Syntax:

>> Know layout of C source file (Lecture 2)

>> Some Data types (as they are defined in CSS for the MSP430)

// What are the sizes for each datatype?

 int a; //

 float b; //

 char c; //

 unsigned int d; //

 long int e; //

 double f; //

 int arr[5]; //

Arrays: Are blocks of memory where multiple values are stored contiguously. Storing

elements successively (in order) makes it easy to access each element given its index.

ECE2049-E20 6-2

Standard C Operators:

 Math: + - * / = % (modulo)

 Unary: ++ -- (also |= &= += etc.)

 Relational and Logical: > >= < <= == != && | |

 Bitwise: & (AND) | (OR) ^ (XOR) >> (R shift) << (L shift) ~ (NOT)

Quick Questions:
int a = 0x0101;

int w = a + 12;

int x = a << 1;

unsigned char b = 0xff;

unsigned char y = b + 2;

int d = 42;

int z = d / 10;

1) What value is assigned to x?

 a) 0x0202 b) 0x1010 c) 0x2020 c) 0x0080

2) What value is assigned to y?

 a) -1 b) 0 c) 1 d) 256

3) What value is assigned to z?

 a) 2 b) 4 c) 4.2 d) 10

Decisions, looping, etc:

 if (kk > 100) {

 kk = 0;

 } else {

 z = 2*z+kk;

 kk++;

 }

 while (j < 100) {

 /* Body of loop */

 j++;

 }

 for (i = strt; i < end_pt; i++) {

 /* Body of loop. Do something */

 }

 --> The “Forever Loop”
 while (1) {

 /* Body of loop. Do something */

 }

ECE2049-E20 6-3

Basic Structure of a C program

 #define MAX_SZ 100;

 // Determines max value of an array

 unsigned int arrayMax(unsigned int* in_arr, int num_pts);

 void main()

 {

 unsigned int big[MAX_SIZ];

 unsigned int maximum=0;

 unsigned int i, other_val;

 /* Do some stuff */

 i = 0;

 while (i < MAX_SZ)

 {

 big[i] = (i % 10);

 i++;

 }

 maximum = arrayMax(big, MAX_SZ);

 /* Do more stuff */

 } // end of main()

Quick Questions:

1) How many times does the while loop execute?

 a) 99 b) 100 c) 101

2) To what value is big[47] assigned?

 a) 40 b) 0.47 c) 7 d) 470

3) What is the range of valid indices for the big array?

 a) big[1] to big[100] b) big[0] to big[99]

 c) big[0] to big[100] d) big[0] to big[9]

4) To what value is maximum assigned?

 a) 99 b) 100 c) 10 d) 9

ECE2049-E20 6-4

Data Representations (HW #1):

 >> Integer representations:

 --Unsigned, sign-magnitude, two's complement and BCD

 >> Expect Conversion Between Bases and Formats!

Unsigned integers = all bits used to convey magnitude (whole numbers) – For n bits,

 values run from 0 to 2n – 1 (i.e. N=16, 0 to 65535)

 1026 = 00000100 00000010b = 0402h

Sign Magnitude integers = n-1 bits used to convey magnitude with “most significant bit”

 or MSB used for sign (0 = +, 1 = -). For n bits, values run from -2(n-1) -1 to 2(n-1)-1

 1026 = 0000 0100 0000 0010b = 0402h

 -1026 = 1000 0100 0000 0010b = 8402h

 ** Has 2 representations of 0 >>> +0 and -0!

Two's Complement integers = Common format for signed integers (int). For n bits,

values run from -2(n-1) to 2(n-1)-1. (i.e. n=16, -32768 to 32767). Used by C.

 Positive numbers: Same as Unsigned

 1026 = 0000 0100 000 00010b = 0402h

 Negative numbers (ONLY!!): Encode magnitude, Complement each bit, Add 1

 -15 = 0000 0000 0000 1111 = 15

 1111 1111 1111 0000 complement

 +1

 1111 1111 1111 0001 = 0FFF1h = -15 in two's complement

Binary Coded Decimal = Each decimal digit expressed in binary nibble

 367 = 0000 0011 0110 0111b

ECE2049-E20 6-5

Fractional Number representations:

 Fixed point: Binary radix point assigned a fixed location in byte (or word)

 0101.1010 = 5 + 2-1 + 2-3 = 5.625

 Precision is function of number of fractional bits assigned

 --> 4 fractional bits = 2^(-4) = 0.0625 = smallest fraction

 Floating Point (IEEE Standard) : Used to better approximate real valued decimal

 values to a prescribed number of decimal places

 Single Precision (32 bits): S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

 Value = (-1)S 2 (E-127) * (1.F)

 Why are floating point operations computationally expensive?

For the exam, you do not need to remember how to convert to/from floating-point,

but you should understand what it is and how it differs from fixed-point.

Character Representations

ASCII: Standard for representing characters in Roman alphabet and some control

characters

• You will have an ASCII table on the exam. Know how to read one and when you

need it!

Quick Questions:

1) The decimal equivalent of unsigned integer 8002h is

 a) 32770 b) 65538 c) -2 d) 16386

2) The decimal equivalent of two's complement integer 8002h is

 a) -2 b) 32770 c) -32766 d) -65538

3) The decimal equivalent of two's complement integer 0002h is

 a) -2 b) 32770 c) 2 d) -65538

4) The decimal equivalent of BCD integer 8002h is

a) -2 b) 32770 c) 8002 d) 2008

http://www.psc.edu/general/software/packages/ieee/ieee.html

ECE2049-E20 6-6

Little Endian: The MSP430, like Intel processors, is “Little Endian” (HW1)

 -- The lower byte of each 16 bit word is stored first then the higher byte

 “Low Byte, High Byte”

 -- For double words the lower word is stored first then the upper word

Ex: How 65340 decimal = 00 01 00 04h is stored in memory at address 0400h

 Little Endian

Address Byte Value

02403h 00h

02402h 01h

02401h 00h

02400h 04h

A memory dump from CCS shows contents of addresses from left to right starting at 02400h

02400h = 04 00 01 00 ... <= Bytes appear “out of order” when read left to right

Big Endian: Many other RISC processors

 -- The higher byte (big end) of each 16 bit word is stored first then the lower byte

 BIG Endian

Address Byte Value

02403h 04h

02402h 00h

02401h 01h

02400h 00h

A memory dump from a big endian processor (also left to right)

02400h= 00 01 00 04... <= Bytes appear “in order” when read left to right

Network Byte Order = BIG ENDIAN!!!

ECE2049-E20 6-7

Microprocessor Systems Architecture:

>> General Computing Hardware/Software Hierarchy

Applications

Operating System = User Interface

System SW = Interface to HW

HW Layer = CPU, Mem.,

peripherals

>> Gets “squashed” in an embedded system...

Applications

Maybe some System SW functions

HW Layer = CPU, Mem.,

peripherals

Harvard Architecture – Separate memory address spaces (and busses) for code and data

 (“Better” architecture for pipelining instruction fetches)

Von Neumann Architecture – Single memory address space (and bus) for code & data

ECE2049-E20 6-8

>> MSP430x55xx uses Von Neumann architecture

 >> We're using MSP430F5529

 -- 128 KB Flash memory (code)

 -- 8 KB RAM (data) + 2 kB USB RAM

 -- LCD controller

 -- Hardware multiply, UART, and a slew of other peripherals

 (Timers, ADC, comparator, general digital IO ports...)

Memory Organization:

 >> Memory = group of sequential locations where binary data is stored

 -- In MSP430, a memory location holds 1 byte

 -- Each byte has unique address which CPU uses to read to and write

 from that location

 -- Multibyte data is stored Little Endian!

 -- 2 types of memory: Volatile and Non-volatile

 RAM = 8KB = DATA memory = Volatile

 FLASH = 128KB = CODE memory (primarily!) = Non-volatile

Memory Operations

• Read and Write: retrieving or writing DATA to/from RAM (under programmer

control)

• Fetch: retrieving of instruction from CODE (Flash) memory

 (automatic CPU function)

 >> Flash is NOT byte writable!

 -- Must be erased in multi-byte (e.g. 512 byte) segments

 >> A flash write cycle takes much longer than read cycle

MSP430 is 16 bit Microcontroller

 >> 16 bit word size = 16 bit internal registers

 >> Also has 20 bit address bus (can access up to 1 MB = 220 addresses)

 >> Know Memory Map for MSP430x5529x Processors (from HW)

 -- Addresses for RAM & FLASH, (good thing to have in notes!)

 >> Know how to figure memory addresses

ECE2049-E20 6-9

Memory Mapped I/O

What does it mean for I/O to be memory-mapped?

ECE2049-E20 6-10

Quick Questions:

1) The long int i = 0x00081230 is stored in memory by a microprocessor as

Address Contents

0213h 30h

0212h 12h

0211h 08h

0210h 00h

The microprocessor must be

a) Little Endian b) Big Endian c) Running Linux d) Running Windows 10

2) In the MSP430F5529, the RAM is

a) non-volatile system memory b) volatile data memory

c) non-volatile code memory d) consists only of the 16 CPU registers

3) In the MSP430F5529, the FLASH memory is

a) non-volatile code memory b) volatile data memory

c) volatile code memory d) not available in this model

ECE2049-E20 6-11

MSP430F5529 Basic Digital I/O (HW3-4):

>> Eight independent, individually configurable digital I/O ports

 -- Ports 1-7 are 8-bit wide and Port 8 is 3 bits wide

>> Each pin of each port can be configured individually as an input or an output

>> Each pin of each port can be individually read or written to

 Function Select Register: Sets function of each pin in the port (i.e. P4SEL)

 -- Bit = 0 = Selected for Digital I/O

 -- Bit = 1 = Not selected for digital I/O (multiplexed pin functions)

 Direction Register: Sets direction of each pin in the port (i.e. P2DIR)

 -- Bit = 0 = Corresponding pin is an Input

 -- Bit = 1 = Corresponding pin is an Output

 Input Register: Where input to the port is read from (i.e. P2IN)

 -- Bit = 0 = Logic low

 -- Bit = 1 = Logic high

 Output Register: Where data to be output from the port is written (i.e. P5OUT)

 -- Bit = 0 = Logic low

 -- Bit = 1 = Logic high

 Drive Strength: Sets drive strength of port (we will usually leave as default)

 --Bit = 0 = reduced drive strength (default)

 --Bit = 1 = full drive strength

 Pull-up/down Resistor Enable: Enable internal pull-up resistors (can be used for inputs)

 --Bit = 0 = Not enabled (default)

 --Bit = 1 = Enabled (see User's Guide)

>> All I/O port registers are memory mapped. Register names defined in msp430x4xx.h

 (Read from and Write to defined names as if writing to C variables...)

ECE2049-E20 6-12

>> Polling: Repeated checking of IO ports to see if they have data or need servicing

 (usually inside main loop)

#include "msp430.h"

#include <stdlib.h>

void configPort()

{

 P5SEL = 0x00;

 P5DIR = (BIT7|BIT5|BIT3|BIT1);

}

void main()

{

 configPort();

 while (1)

 {

 char in = P5IN;

 P5OUT = (in & 0x55) << 1;

 }

}

a) Which port(s) and which pins are being used as digital inputs?

b) Which port(s) and which pins are being used as digital outputs?

c) Assume that the port 5 input register holds the value 6Dh. What value is

 written to the port 5 output register?

ECE2049-E20 7-1

Module 7. Intro to Clocks and Timers

Clocks

A microcontroller and its peripherals are just sequential logic circuits. Remember that sequential

logic circuits need a clock signal. Before a CPU can operate, it must have power, a clock signal,

and ground.

What does a clock signal look like?

ECE2049-E20 7-2

Clocks on the MSP430: The Unified Clock System (UCS)

Microprocessors usually allow you to configure the clocks used by the system. On the MSP430,

this tasks is handled by the Unified Clock System (UCS), which is billed as "full featured and

capable" (read: complex and confusing)!

 Like most microcontrollers, the MSP430 has a variety of configurable clock sources and clock

signals:

There are two types of clock sources:

• External sources:

• Internal sources:

Why is all of this configurability important?

ECE2049-E20 7-3

The MSP430F5529 has 5 possible clock sources:

XT1CLK

XT2CLK

DCOCLK

REFOCLK

VLOCLK

These provide 3 clock signals to the CPU and peripherals:

ACLK - Auxiliary Clock:

MCLK - Main or Master Clock:

SMCLK - Sub-main Clock:

The three clock signals are software selectable, meaning that the user can configure the clock

sources and speeds for the CPU and peripherals at runtime.

ECE2049-E20 7-4

Configuring the UCS: The Gist

In general, configuring the UCS boils down to connecting the various clock sources (XT1, XT2,

DCO, etc.) to the 3 clock signals (ACLK, MCLK, SMCLK):

In addition, you also need to configure some parameters for the sources (like the DCO), and the

signals (like clock dividers).

ECE2049-E20 7-5

Configuration notes

Configuring XT1 and XT2

The low frequency and high frequency crystals XT1 and XT2 are connected via pins on the

MSP430. On the MSP430F5529, these pins are multiplexed with P5.4-5 (for XT1) and P5.2-3

(for XT2).

If you want to use XT1 or XT2, you need to configure these pins for function mode (as opposed

to digital I/O mode) by setting their corresponding bits in P5SEL to 1:

P5SEL |= (BIT5|BIT4|BIT3|BIT2);

In our lab, this is already done for us in the template in the configDisplay function.

The DCO (Digitally-controlled oscillator)

The DCO is a digitally-controlled oscillator, which means that you can configure its frequency

in software. The UCS module provides a frequency-locked loop (FLL) to stabilize the DCO.

The frequency for the DCO is defined by the following formula:

ECE2049-E20 7-6

Default clock configuration

After decoding the default register values, we know that by default, SMCLK = MCLK, and

both use DCOCLK as their source. In addition, ACLK = XT1CLK (if enabled). From this, we

can conclude that the default clock settings are as follows:

• ACLK (Auxiliary clock) =

• MCLK (Master/CPU clock) =

• SMCLK (Sub-main clock) =

In our labs, we will keep it simple and use these default settings! These are important.

Remember them!

ECE2049-E20 7-7

Buttons Challenge (from Homework)

What is wrong with this program? What can we do about it?

ECE2049-E20 8-1

Module 8. Timers: Theory and Practice

Topics

• Intro to Interrupts

• Intro to Timers

But first… what is a timer?

Most microcontrollers have timers in some form. Timers can be used to generate interrupts at

particular intervals, generate PWM signals, measure frequency of input signals, and more! In

this course, we will focus on the generation of timer interrupts, which tell the CPU that a certain

amount of time has passed.

ECE2049-E20 8-2

Fundamental timer counting modes

Most timers have a number of counting modes:

Unidirectional mode (called "Up mode" on the MSP430)

Count from 0 to a programmer set maximum count value (which we call MAX_CNT).

Continuous mode

Count from 0 to full count of timer (8, 12, 16 bits, etc.) For a 16 bit timer, this means:

Up/Down Mode

Counts from 0 to programmer set maximum count, then back down to zero

In each mode, most timers (like those on the MSP430) will trigger an interrupt when the count

transitions back to 0.

Most timer peripherals have two "operating modes", which control how they use the counter:

• Capture mode: Records the counter value when a certain input changes

• Compare mode: Performs an operation when the counter value reaches a certain value

ECE2049-E20 8-3

Interrupts

Interrupt: A signal sent to the CPU from a peripheral or external source

• Typically, an interrupt is either a request for the CPU to do something or a notification

that the peripheral has something (ie, data) available for the CPU to use.

• The CPU can choose to accept (or to "service") the interrupt, or ignore it. Certain

interrupts, called "non-maskable interrupts" (NMIs) cannot be ignored.

Interrupts on the CPU are handled by a special function called an Interrupt Service Routine

(ISR).

Note: Interrupts are not just for timers!

Many peripherals on the MSP430 can generate interrupts for different reasons:

What does the CPU do when it receives interrupts?

Arrival of interrupts is asynchronous to the program's execution.

ECE2049-E20 8-4

How do interrupts work internally?

Peripherals that can trigger interrupts so do by issuing a request to the CPU’s interrupt

controller, often over a dedicated wire called an interrupt request line. The interrupt controller

decides how the CPU processes each interrupt:

ECE2049-E20 8-5

Timers on the MSP430

The MSP430F5529 has a number of timer peripherals, as shown in the system block diagram:

MSP430s have two main types of timers, Timer A, and Timer B; both types function in very

similar ways, but have some subtle differences. Each chip can have multiple Timer A's and B's,

as shown in the block diagram.

The MSP430F5529 has the following timers:

Timer B: Has 7 capture/compare units, can generate PWM signals

Timer A0: Multiple capture compare modules, can generate PWM

Timer A1: Functionally the same as A0

Timer A2: 3 capture compare registers

Additionally, the MSP430F5529 has the following other peripherals that contain timers:

• A Basic Timer, which has some real-time clock features

• The Watchdog timer (WDT)

o When the WDT is on, it must continuously have its count reset within the program

o If the count reaches zero, it resets the MSP430!

Why does the WDT exist? To prevent your program from getting stuck in some kind of

unrecoverable state. We don't want to deal with the WDT in your labs, which is why the first

line of every program we write is:

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

This disables the watchdog timer. If you wait too long to stop the watchdog timer, your program

will reset only a few milliseconds after startup!

ECE2049-E20 8-6

Configuring timers on the MSP430

Like the UCS module, timers are highly configurable!

We will stick to the basic configurations and only add complexity when we need it! This is a

good design practice, and also makes our lives easier!

Timer A has the following registers:

We will use a subset of these registers:

• TA2CTL: Control register for Timer A2

• TA2CCTLx: Control register for a capture/compare block

• TA2CCRx: Capture/compare register (data register)

We will discuss how to use these registers in detail using an example.

ECE2049-E20 8-7

Timer configuration example: A stopwatch

Example: Implement a stopwatch that measures seconds and hundredths of seconds on our

development board.

First, how do we measure the passage of 0.01 seconds? By counting clock ticks. We will do this

by configuring a timer for the job. But how do we start?

In our labs, we can break any problem involving timers into a set of steps:

1. Select a timer to use: How about Timer A2?

2. Map desired behavior to an operating mode (Up, Continuous, Up/Down)

3. Select a clock source and configure registers appropriately

ECE2049-E20 8-8

How do we configure the TimerA2 control registers?

ECE2049-E20 8-9

Using this information, we can write the register configuration:

Parameters we know Relevant register field

We can use this to write:

TA2CTL =

TA2CCR0 =

TA2CCTL0 =

ECE2049-E20 8-10

Step 4: Write Interrupt Service Routine (ISR) and enable interrupts

… how do we write interrupts in our code, anyway?

An ISR for Timer A2 looks like this:

// Example syntax for TimerA2 ISR

#pragma vector=TIMER2_A0_VECTOR

__interrupt void TIMER_A2_ISR(void)

{

 // Do something

 // ...

}

In addition, in your main() you must enable interrupts to tell the CPU to handle them:

// Using pre-defined macros in msp430.h

_BIS_SR(GIE); // Global interrupt enable

// ... OR ...

__enable_interrupt();

(The above macros are equivalent. You will see both of them in example code and notes in this class.)

ECE2049-E20 8-11

Back to the example: what does it mean when we get an interrupt from Timer A2?

What should the ISR do?

Each interrupt means that the timer has reached MAX_CNT, meaning that 328 ticks of ACLK

~= 0.01s have elapsed.

Thus, the ISR should count how many interrupts have occurred… and do nothing else:

// Global count of clock ticks

unsigned long int timer = 0;

#pragma vector=TIMER2_A0_VECTOR

__interrupt void TIMER_A2_ISR(void)

{

}

Important note: ALWAYS keep your ISRs short. Why?

What happens if your ISR hasn't completed before the next ISR arrives?

In general, NEVER do any of the following in an ISR:

• Write to the display

• Flush the display

• Do floating point math

• Call expensive functions like sin() or sprintf()

ECE2049-E20 8-12

Examples: Using the timer variable

Stopwatch

Now that our ISR is properly configured, what does the variable timer represent? How do you

use it to actually display the time?

The timer represents the number of 0.01 second intervals that have elapsed since Timer A2 was

started. To use it, we need to convert this to minutes and seconds in order to display it.

How do we do this? Note that we want to do it using integer math, since floating point is slow

and we eventually want to put this information on the display.

ECE2049-E20 8-13

Timer accuracy

How accurate will our stopwatch be? Is that accuracy acceptable?

The duration of one ACLK tick = 1/32768 Hz = 3.05e-5 seconds

ECE2049-E20 8-14

Since our stopwatch will run slow, how long until it is off by 0.01 second?

Here is how we can add a leap count for this example:

#pragma vector=TIMER2_A0_VECTOR

__interrupt void TIMER_A2_ISR(void)

{

}

When using leap counting, we can use the following general rule:

In our example, is our leap counting solution perfect? For how long will it be accurate to 0.01

sec?

ECE2049-E20 8-15

Configuration example: 1ms resolution

What if we wanted our stopwatch to have 1ms resolution? What would need to change?

We would need to change the value of MAX_CNT. Would we need leap counting?

ECE2049-E20 8-16

Configuration example

Configure Timer A2 for 0.5 sec resolution. Do you need to use leap counting?

Another configuration example

What if you wanted 0.0001 second resolution? What do we do now?

ECE2049-E20 9-1

Module 9. Analog to Digital Conversion

Topics

• More on timers

• Starting Analog to Digital Conversion

Warmup: Analyzing a timer configuration

1. What is the period of the timer with the configuration below? (How often are interrupts

generated?)

void runtimerA2(void)

{

 TA2CTL = TASSEL_2 | MC_1 | ID_3;

 TA2CCR0 = 32767;

 TA2CCTL0 = CCIE; // Enable timer A2 interrupt

}

2. The ISR for the timer above increments a counter called timer on each interrupt. If

timer = 2447, how much time has elapsed since the timer was started?

ECE2049-E20 9-2

Analog to Digital Converters (ADCs)

Analog to Digital Converters (ADCs), or A/D converters, have become ubiquitous in embedded

applications.

• ADCs return a binary code to represent a measured voltage from within a fixed range of

voltages

• Small voltages return "low valued" codes, greater voltages return "larger" codes

For example, within the range of 0–3V, a 10-bit ADC could return codes like these:

00 0000 0000b = 000h = 0d

01 1111 1111b = 1FFh = 512d

11 1111 1111b = 3FFh = 1023d

• It is very likely that you will use an ADC when you take ECE2799, do your MQP, or

work on a robotics project!

ECE2049-E20 9-3

ADC Concepts

When an analog signal is “read” by an ADC, the analog value of the signal is sampled to obtain

a k-bit digital representation of that value at that time.

ECE2049-E20 9-4

Realities of ADCs

No ADC is perfect–there will always be some error between the analog voltage and the one

measured with the ADC. There are several reasons for this, including:

• Output codes are "quantized": the closest ADC code will differ somewhat from the

analog voltage, depending on the resolution

• Our MSP430 uses a "sample and hold" type of ADC, which means the analog circuitry

that samples the waveform can "hold" the analog value at a certain level—this means that

it might miss certain changes in the waveform

• Transients from switching circuitry inside the ADC can affect the output code, which may

introduce some non-linearity in the output values

When sampling at faster rates, these effects tend to get worse!

We will not deal with these issues much in this class, but it is important to know they exist.

ADCs on Microcontrollers

Small ADCs like the 12-bit "Sample and Hold" type ADC on our MSP430 often come standard

on small microcontrollers.

Are they any good?

These ADCs are best suited to measuring from sensors with low to moderate data rates with a

fixed dynamic range. Some examples:

These small ADCs are likely not suitable for applications with higher data rates or a larger

dynamic range. Examples:

As always, however, the application will determine the type of ADC you need!

What is dynamic range, anyway?

ECE2049-E20 9-5

Key Concepts for using Analog to Digital Converters

(or performing any measurements)

1. Full Scale Range (FSR): The maximum range of analog values that can be represented

This is defined as the total range of voltages between VREF+ and VREF-

2. Resolution (for a single bit): The smallest change in value that can be measured

You can think of this as the "value of 1 bit" in an output code.

3. Dynamic range: Ratio of largest to smallest values that can be measured

The dynamic range is usually expressed in decibels (dB), and can be computed as follows:

ECE2049-E20 9-6

Thinking about data representations

As an embedded systems engineer, you get to decide how to make your sensors interface

with the ADC! Knowing how your external sensor works and how to "map" it to the ADC

you're using is as critical as knowing how to make the MSP430 read the value!

Here’s a way to think about how sensor measurements are represented as digital values:

ECE2049-E20 9-7

Example: Current sensor

You can make a simple digital current meter by measuring the voltage across a small sensing

resistor.

Can we use the ADC12 on the MSP430 to measure current in the range 0–1A with 1mA

accuracy? How about to 0.1mA accuracy?

For now, let's assume we have an FSR of 2.5V.

ECE2049-E20 9-8

On the MSP430: Using the ADC12

Our MSP430 provides includes a 12-bit ADC, called the ADC12.

About the ADC12

• 16 channel, 12-bit sample-and-hold ADC

• Maximum sample rate of 200k samples/second

• 12 External analog inputs A0-A7, A12-A15; shared with Digital I/O ports 6 and 7

• You configure and use them by setting values in various control registers

Overall ADC operation

An ADC's job is to perform a conversion by sampling an analog voltage into a digital value.

The ADC12 has the following components:

• Inputs from analog input channels

• Core unit to perform conversions

• Core configuration registers that configure how the conversion happens

• Can define multiple channels to perform multiple conversions at once

o Memory control registers that configure how each channel should be converted

o Memory registers that store the conversion results for each channel

ADC12 Control and Data registers

You can find the ADC12 register definitions in the MSP430 User's Guide (Ch. 28).

ECE2049-E20 9-9

Core configuration registers

The ADC12 conversion core is configured using ADC12CTL0 and ADC12CTL1.

ADC12CTL0 controls the following options:

• Sample and Hold Time (ADC12SHT1x, ADC12SHT0x): Controls sampling period

• Multiple sample conversion method (ADC12MSC)

• Reference voltages (ADC12REF2_5V and ADC12REF_ON)

• ADC12ON bit: Turns on the ADC12! (It's off by default!)

• Enable conversions (ADC12ENC): Must be set to 1 before ADC will perform

conversions! When set to 0, ADC can be configured.

• Start conversion (ADC12SC): Starts a conversion!

• Overflow/conversion time interrupt enables (ADC12OVIE, ADC12TVIE)

ADC12CTL1 controls the following options:

• Conversion start address (ADC12STARTADDx)

• Sample and hold source select (ADC12SHS):

• Sample and hold pulse mode select (ADC12SHP): Always set this to 1

• Invert signal sample and hold (ADC12ISSH)

• ADC12 clock divider (ADC12DIVx): Typically use 1

• ADC12 clock source select (ADC12SSELx):

• Conversion mode select (ADC12CONSEQx): Can select single, multi-channel, or

repeated conversions

• ADC12 busy bit (ADC12BUSY)

ECE2049-E20 9-10

Results from each channel are stored in the low 12 bits of one 16 bit Conversion Memory

Register (ADC12MEMx).

Each memory register has a corresponding Conversion Memory Control Register

(ADC12MCTLx).

Each ADC12MCTLx controls one channel on which a conversion can occur. The conversion

parameters for channel x is controlled by Memory Control Register x, and the result gets stored

in memory register x.

Each ADC12MCTLx controls the following options:

• Reference voltage select (ADC12SREFx): Important settings are as follows:

• Analog input channel select (ADC12INCH_x):

• End of Sequence (EOS): Set to 1 if this channel is the end of a sequence of channels.

Used for multi-channel conversions.

So, as a programmer, what do you need to use the ADC12?

ECE2049-E20 9-11

ADC configuration: Key steps

Step 0: Disable the ADC for configuration

• Before you can modify any ADC12 register settings, conversions must be disabled by

setting ADC12ENC = 0.

Step 1: Select ADC core behavior (ADC12CTL0 and ADC12CTL1)

• Set clock source and divider

• Configure sample and hold behavior

• Select trigger source (ADC12SHS)

• Reference voltages

Step 2: Select conversion mode for your application

• Configure using ADC12CONSEQx in ADC12CTL1 register

• There are four possible conversion modes:

Step 3: Select input channel(s)

• What analog inputs do we need to read?

• Configure using ADC12INCHx in ADC12MCTLx registers

ECE2049-E20 9-12

• Analog inputs A0–A7 and A12–A15 are external analog inputs–these are multiplexed

with Digital I/O pins on Port 6 and Port 7!

o To use them, we need to configure the digital I/O pins for function mode!

Ex. P6SEL | BIT7|BIT6;

• Analog inputs 8, 9, 11 are connected to the various on-chip reference voltages–you can

use these to monitor the "health" of the microcontroller

• Input channel 10 is connected to an internal temperature sensor (ADC12INCH_10)

Step 4: Enable ADC interrupts, if desired (ADC12IE register)

• Using interrupts is NOT required, but useful if you are doing repeated measurements

• Also need to write ISR

Step 5: Enable ADC and start conversions

• Need to re-enable ADC so it will perform conversions (opposite of step 0)

• Start conversion process by setting ADC12SC.

• If not using interrupts, need to poll ADC12BUSY bit in ADC12CTL1 until conversion

has finished!

Example: Current measurement sensor

You can make a simple digital current meter by measuring the voltage across a small sensing

resistor. Can we use the ADC12 on the MSP430 to measure current in the range 0–1A with 1mA

accuracy? (Yes!) How about to 0.1mA accuracy? (No!)

Assume we have an FSR of 2.5V and the analog voltage is connected to input A0.

What parameters do we need?

ECE2049-E20 9-13

// Current sensor conversion example

void config_adc(void) {

/* ***** Core configuration ***** */

// Reset REFMSTR to enable control of reference voltages by ADC12

REFCTL0 &= ~REFMSTR;

/*

 * Initialize control register ADC12CTL0

 * STH0x = 9 => 384 clock cycles; MSC = 0 => no multisample mode

 * REF2_5V = 1 => Reference is 2.5V, REFON = 1 => Use internel reference generator

 * ADC12ON = 1 => Turn on ADC12

 */

ADC12CTL0 = ADC12SHT0_9 | ADC12REFON | ADC12REF2_5V | ADC12ON;

/*

 * Initialize control register ADC12CTL1

 * STARTADDx = 0 => Start conversion at ADC12MEM0

 * SHSx = 0 => Conversion trigger: Start when ADC12SC is set to 1

 * SHP = 1 => SAMPCON sourced from sampling timer (default)

 * ISSH = 0 => Input signal not inverted

 * SSEL = 0 => ADC12clock = ADC12OSC (~5 MHz)

 * DIVx = 0 => Divide ADC12CLK by 1

 * CONSEQx = 0 => Single channel, single conversion mode

 */

ADC12CTL1 = ADC12SHP;

/* ***** Channel configuration ***** */

// Set conversion memory control register ADC12MCTL0

// SREF = 001b => Voltage refs:

// EOS = 0 => End of sequence not set (not a multi-channel conversion, so ig-

nore)

ADC12MCTL0 = ADC12SREF_1 | ADC12INCH_0;

// Set P6.0 to FUNCTION mode

// This connects the physical pin P6.0/A0 to the ADC input A0

P6SEL |= BIT0;

// Enable the ADC. This means we are done configuring it,

// so we can start the conversion.

ADC12CTL0 |= ADC12ENC;

}

ECE2049-E20 9-14

unsigned int read_adc(void) {

// Input voltage has range 0-2.5V, which corresponds to 0 to 1A.

unsigned int in_value;

ADC12CTL0 &= ~ADC12SC;

// Enable and start a single conversion

ADC12CTL0 |= ADC12SC;

// Wait for the conversion to finish by polling the busy bit

// The busy bit is automatically set to 0 when the conversion is done

while(ADC12CTL1 & ADC12BUSY) {

 __no_operation(); // Could also just leave the loop empty

}

// Now that the conversion has completed, we can read the result

// from the memory register

in_value = ADC12MEM0 & 0x0FFF; // Keep only the low 12 bits

return in_value;

}

Now what do we do with the return value?

ECE2049-E20 9-15

Example: The internal temperature sensor

To use any sensor, you need to understand how the sensor output (in this case, voltage)

corresponds to the quantity it measures, which is documented by the designers.

Our MSP430 contains a built-in sensor to measure the internal chip temperature. It has a linear

mapping from voltage to temperature:

To use the sensor, we need to read some calibration data from the device, which we use in the

computation for the resolution. This information is stored in the Tag-Length-Value Table (TLV

Table), which is a portion of flash memory that contains some device-specific settings and

constants—we need to read from the addresses specified in this table to get the calibration data.

For more information on how this works, see p. 102 of the datasheet.

According to the datasheet, the calibration data provided is based on a 1.5V reference.

ECE2049-E20 9-16

More ADC features

Multi-channel conversion

What if we wanted to read data from two sensors? Consider the following sensors:

• Our current sensor example from earlier (connected to input channel A0, 2.5V reference)

• A barometric pressure sensor (Input channel A4, 3.3V reference)

These sensors require different settings for reference voltages and inputs.

We could reconfigure the ADC every time we wanted to take a measurement, but this would be

annoying. Instead, the ADC12 provides several different conversion modes to solve this

problem. We will discuss the most straightforward: multiple channel, single conversion mode.

To perform readings from two sensors, we will need to use two ADC12MEMx registers, one for

each channel.

Like the previous examples, we need to:

• Configure the ADC12 core, this time selecting multiple-channel, single conversion mode

• Configure one ADC12MEMx register for each reading we want to perform with the

appropriate settings for each channel (ie, analog channel and reference voltage)

ECE2049-E20 9-17

Configuration example

// Multi-sample conversion example: current sensor + pressure sensor

// Input voltage has range 0-2.5V, which corresponds to 0 to 1A.

// The temperature sensor uses a 3.3V reference, using the following calibration

data

// Resolution for current sensor: 1.0A/4096

// (Here, we add the f suffix so the compiler will know this constant is a float)

#define MA_PER_BIT (0.0244f)

void config_adc(void)

{

 unsigned int in_current, in_temp;

 /* ***** Core configuration ***** */

 // Reset REFMSTR to enable control of reference voltages

 REFCTL0 &= ~REFMSTR;

 /*

 * Initialize control register ADC12CTL0

 * This is similar to single-channel conversion, except we add the following:

 * MSC = 1 => Burst mode (convert multiple channels) * - *NEW*

 * REF2_5V = 1 => Reference is 2.5V

 */

 ADC12CTL0 = ADC12SHT0_9 | ADC12REFON | ADC12REF2_5V | ADC12ON | ADC12MSC;

 // ^----NEW!

 /*

 * Initialize control register ADC12CTL1

 * This is similar to the previous example,

 * except we need to consider the following:

 * STARTADDx = 0 => Start conversion at ADC12MEM0

 * CONSEQx = **1** => ***Sequence of channels, converted once***

 */

 ADC12CTL1 = ADC12SHP | ADC12CONSEQ_1;

 // ^------NEW!

 /* ***** Channel configuration ***** */

 /* Here, we pick one MCTLx register per reading we need

 * Let’s pick MCTL0 for the current sensor, and MCTL1 for the pressure sensor

 */

 // Current sensor: Input channel A0, SREF_1 => Internal ref => 2.5V

 ADC12MCTL0 = ADC12SREF_1 + ADC12INCH_0;

 // Pressure sensor: Input channel A4, SREF_0 => 3.3V Reference, ADC12EOS = 1

 ADC12MCTL1 = ADC12SREF_0 + ADC12INCH_4 + ADC12EOS;

 // ^- NEW!

 // For the last channel in our sequence, we set the ADC12EOS bit. This tells

 // the ADC12 that our sequence is finished!

 ADC12CTL0 |= ADC12ENC; // Done configuring, enable conversion

ECE2049-E20 9-18

 /* ***** I/O configuration ***** */

 // Set P6.0 and P6.4 to FUNCTION mode

 // This connects the physical pins P6.0/A0 P6.4/A4 to the ADC inputs A0 and A4

 P6SEL |= BIT4|BIT0;

}

void read_adc(void)

{

 // Enable the ADC and start the conversion

 ADC12CTL0 |= ADC12ENC;

 ADC12CTL0 &= ~ADC12SC;

 ADC12CTL0 |= ADC12SC;

 // Wait for the conversion to finish by polling the busy bit

 while(ADC12CTL1 & ADC12BUSY) {

 __no_operation();

 }

 // Now that the conversion has completed, we can read the results

 // from the memory registers

 in_current = ADC12MEM0 & 0x0FFF; // Keep only the low 12 bits

 in_pressure = ADC12MEM1 & 0x0FFF;

 // Finally, we would convert the results to current (amps)

 // and pressure (atm, kPa, mmHg. ...), respectively, and store them somewhere

}

ECE2049-E20 9-19

ADC12 Interrupts

Our examples so far have used the ADC12SC bit to start conversions, and then we poll the

ADC12BUSY bit to see when a conversion is complete:

ADC12CTL0 |= ADC12SC; // Start the conversion

// Poll busy bit waiting for conversion to complete

while (ADC12CTL1 & ADC12BUSY) {

 __no_operation(); // Could just leave body of loop empty

}

in_value = ADC12MEM0 & 0x0FFF; // Read result

This is another form of busy-waiting, which is like swDelay:

• The CPU isn't doing any useful work–it's just sitting in a loop!

• While ADC conversions happen very quickly (<< 1 ms), the CPU executes faster, so we

do need to wait for a result

The main purpose of on-chip peripherals like the Timer and ADC is to remove burdens from or

provide services to the CPU.

How useful is a peripheral if the CPU is just waiting for it to finish?

ECE2049-E20 9-20

How do we use interrupts on the ADC12?

• Configure control registers same as before (as if you were polling)

• Set the ADC12IE register bit corresponding to the last MEMx register used in the

conversion. (If you are only doing single-channel conversions, this is ADC12MEM0.)

Here is an example configuration with two channels:

ADC12CTL0 = ADC12SHT0_9 | ADC12REFON | ADC12ON | ADC12MSC;

ADC12CTL1 = ADC12SHP | ADC12CONSEQ_1;

// Here, we are performing conversions for two channels

ADC12MCTL0 = ADC12SREF_0 + ADC12INCH_5;

ADC12MCTL1 = ADC12SREF_1 + ADC12INCH_6 + ADC12EOS;

// Because we are converting for two channels, we want the interrupt

// to occur after BOTH conversions are complete, so we enable the

// interrupt for MEM1.

ADC12IE = BIT1;

__enable_interrupt(); // Globally enable interrupts

ADC12CTL0 |= ADC12SC + ADC12ENC; // Enable ADC and start conversion

What should the ISR do? It's triggered when a conversion is finished, so it just needs to read the

memory registers!

// Global variables for storing data

// (could also store into an array!)

volatile unsigned int in_value1, in_value2;

#pragma vector=ADC12_VECTOR

__interrupt void ADC12_ISR(void)

{

}

ECE2049-E20 9-21

Timer-triggered ADC Measurements

It's also possible to have the ADC perform conversions automatically. An easier option is to

trigger ADC conversions from a timer and use ADC interrupts to read the results.

For example, say we wanted to take measurements every 0.25 seconds:

void config_timerA2(void)

{

}

Inside the timer ISR, start the ADC12 conversion:

// NOTE: this example assumes the ADC has already been configured.

// Global variables for storing data (could also store into an array!)

volatile unsigned int value1, value2;

// Timer A2 ISR

#pragma vector=TIMER2_A0_VECTOR

__interrupt void Timer_A2_ISR(void)

{

 timer++; // You probably still want to keep track of time

 ADC12CTL0 |= ADC12SC;

}

// ADC 12 ISR

#pragma vector=ADC12_VECTOR

__interrupt void ADC12_ISR(void)

{

 // Move the result(s) into global variables

 value1 = ADC12MEM0 & 0x0FFF;

 // . . .

}

void main(void) {

 do_all_setup();

 while(1) {

 display(value1);

 }

}

ECE2049-E20 9-22

Aside: Data logging

A common practice when working with sensors is to record past data. Since memory is finite

resource, it is common to only keep the last N values.

For example: if we are building a sensor that logs temperature and wind speed, we may measure

data every second and keep only the results from the last hour.

An efficient way to keep track of the “last N values” in an array is by using circular indexing.

When used this way, the array is often called a circular buffer.

Circular Indexing: How it works

• Use a fixed-size array (“buffer”) to store values

• Keep track of the tail, which is the “end” index of data

in the array (also called the “write pointer”)

Using this definition, the tail always represents the

location of the oldest element, which is also the next

index to be filled with new data

• When adding a new element, add 1 to the index.

When the index reaches the end of the array, wrap

around to the beginning

How do we implement this?

For more information

• See “Data Logging Example” on the course website

• The Wikipedia entry on Circular Buffer has great animations!

ECE2049-E20 10-1

Module 10. Operating Modes and More

Topics

• Revisiting interrupts

• Operating modes

ADC12 Interrupts

Our examples so far have used the ADC12SC bit to start conversions, and then we poll the

ADC12BUSY bit to see when a conversion is complete:

ADC12CTL0 |= ADC12SC;

while (ADC12CTL1 & ADC12BUSY) {

 __no_operation(); // Could just leave body of loop empty

}

in_value = ADC12MEM0 & 0x0FFF;

This is another form of busy-waiting, which is like swDelay:

• The CPU isn't doing any useful work–it's just sitting in a loop!

• While ADC conversions happen very quickly (<< 1 ms), the CPU executes faster, so we

do need to wait for a result

The main purpose of on-chip peripherals like the Timer and ADC is to remove burdens

from or provide services to the CPU.

ECE2049-E20 10-2

The solution to this is to use an Interrupt, an external signal sent by a peripheral requesting that

the CPU do something. Interrupts are hard-wired into certain peripherals. Fortunately for us, the

ADC12 can trigger interrupts.

On the ADC12, an interrupt can signal the end of a conversion, meaning that it is ready for the

CPU to read data from its memory registers.

Here is an example configuration with two channels:

ADC12CTL0 = ADC12SHT0_9 | ADC12REFON | ADC12ON | ADC12MSC;

ADC12CTL1 = ADC12SHP | ADC12CONSEQ_1;

// Here, we are performing conversions for two channels

ADC12MCTL0 = ADC12SREF_0 + ADC12INCH_5;

ADC12MCTL1 = ADC12SREF_1 + ADC12INCH_6 + ADC12EOS;

// Because we are converting for two channels, we want the interrupt

// to occur after BOTH conversions are complete, so we enable the

// interrupt for MEM1.

ADC12IE = BIT1;

__enable_interrupt(); // Globally enable interrupts

ADC12CTL0 |= ADC12SC + ADC12ENC; // Enable ADC and start conversion

What should the ISR do? It's triggered when a conversion is finished, so it just needs to read the

memory registers!

// Global variables for storing data

// (could also store into an array!)

volatile unsigned int in_value1, in_value2;

#pragma vector=ADC12_VECTOR

__interrupt void ADC12_ISR(void)

{

 // Move the results for both channels into global variables

 in_value1 = ADC12MEM0 & 0x0FFF;

 in_value2 = ADC12MEM1 & 0x0FFF;

}

ECE2049-E20 10-3

“Scheduling” ADC measurements

It's also possible to have the ADC perform conversions automatically. An easier option is to

trigger ADC conversions from a timer and use ADC interrupts to read the results.

// NOTE: this example assumes the timer and ADC have already been configured.

volatile unsigned int in_value1, in_value2;

// Timer A2 ISR

#pragma vector=TIMER2_A0_VECTOR

__interrupt void Timer_A2_ISR(void)

{

 timer++;

 ADC12CTL0 |= ADC12SC;

}

// ADC 12 ISR

#pragma vector=ADC12_VECTOR

__interrupt void ADC12_ISR(void)

{

 in_value1 = ADC12MEM0 & 0x0FFF;

 // . . .

}

void main(void)

{

 setup_everything();

 _enable_interrupt();

 while(1){

 do_something_with_adc_values(in_value1, in_value2);

 }

}

Here, we now have two ISRs, one for the ADC, and one for the timer. Thus, our main program

can simply use in_value1 and in_value2 without needing to explicitly start conversions.

ECE2049-E20 10-4

Polling versus Interrupts Revisited

So far most of our code has relied heavily on Polling. While we have been using the timer to

keep track of fixed time intervals, our main functions are still busy-waiting in some form of

loop:

while (1)

{

 if (global_time_cnt > last_time)

 {

 take_ADC_meas();

 last_time = global_time_count;

 }

 button = checkButtons();

 . . .

 // Other task(s) can occur at different intervals

 if ((global_time_cnt % cnt_per_second) == 0)

 {

 toggleLED(LED2)

 displayHHMMSS(global_time_cnt);

 }

 . . .

}

This is not efficient: while it is waiting, the CPU is using precious energy to check if it needs to

do something!

ECE2049-E20 10-5

As an alternative, we can organize our code to schedule tasks to occur at specific “real” times,

and even assign priorities to tasks.

 --> We do this by implementing the Scheduler INSIDE Timer ISR!

// A simple task scheduler for the MSP430F5529

#pragma vector=TIMER2_A0_VECTOR

__interrupt void Timer_A2(void)

{

 // First priority: maintain time base

 global_time_cnt++;

 // Some of the app task(s) may execute every time slice

 take_ADC_meas();

 button = checkButtons();

 . . .

 // Other application task(s) at different intervals

 if ((global_time_cnt % cnt_per_second) == 0)

 {

 toggleLED(LED2)

 displayHHMMSS(global_time_cnt);

 }

}

Here, main() would consist of initialization followed by an “empty” loop:
void main()

{

 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

 init_sys(); // Initialize the MSP430

 setupButton(); // configure buttons

 setupADC(); // configure ADC

 . . .

 _enable_interrupt(); // Global Interrupt enable

 runTimerA2(); // Start scheduler

 // An empty forever loop!

 // All application tasks are scheduled and dispatched

 // from within TimerA2 ISR

 while(1)

 {

 __no_operation();

 }

ECE2049-E20 10-6

What are we assuming by organizing or scheduling our application's tasks like this?

There some very important assumptions here:

Remember the rule of interrupts!

• We can have multiple interrupt sources for different peripherals—we want to maintain

this behavior when scheduling tasks.

• By default, interrupts are disabled inside an ISR. Therefore, one interrupt cannot

normally interrupt another one, but we can change this behavior when we need it.

ECE2049-E20 10-7

Interrupt Priorities

ECE2049-E20 10-8

Operating Modes

What’s the advantage of scheduling tasks?

>>Our CPU doesn’t need to be running all the time!!

This means we can use the MSP430’s operating modes to save energy when not

performing tasks.

The MSP430F5529 has 6 Operating Modes:

 Active Mode => “Normally Active” = CPU is active, all enabled clocks are active

 Low Power Mode 0 => CPU, MCLK are disabled , SMCLK , ACLK are active

 Low Power Mode 1 => CPU, MCLK, DCO osc. are disabled , DC generator is

 disabled if the DCO is not used for MCLK or SMCLK in

 active mode, SMCLK, ACLK are active

 Low Power Mode 2 => CPU, MCLK, SMCLK, DCO osc. are disabled , DC

 generator remains enabled, ACLK is active

 Low Power Mode 3 => CPU, MCLK, SMCLK, DCO osc. are disabled , DC

 generator disabled, ACLK is active

 Low Power Mode 4 => CPU and all clocks disabled (RAM retention mode)

 Low Power Mode 4.5 => CPU and all clocks disabled (no RAM retention), PWR

 management off, Digital IO pin configuration retained

ECE2049-E20 10-9

Operating Mode Basics

>> Most embedded systems run on batteries

 -- Enter Low Power Mode to conserve batteries

On MSP430F5529 Low Power Modes are indicated/selected thru the CPUOFF,

 OSCOFF, SCG0, and SCG1 bits in the Status Register (SR)

Mode SCG0 SCG0 OCSOFF CPUOFF

Active 0 0 0 0

LPM0 0 0 0 1

LPM1 0 1 0 1

LPM2 1 0 0 1

LPM3 1 1 0 1

LPM4 1 1 1 1

LPM4.5

*

1 1 1 1

 *PMMREGOFF bit = 1, as well

Status Register Layout:

Reserved SCG1 SCG0 OSCOFF CPUOFF GIE N Z C

How do you enter a Low Power Mode?

Can set with the _BIS_SR() function:

 Ex: _BIS_SR(LPM3_bits) ; // set bits to enter LMP3

 _BIS_SR(LPM3_bits|GIE) ; // set bits to enter LMP3

 // and enable interrupts

ECE2049-E20 10-10

When to enter LPM and how do you exit?

 --> Ideally want to enter LPM whenever not executing tasks

 --> This is made simple if program is organized as a “Scheduler”

 --> Enter LPM after starting timer in main()

// A simple task scheduler for the MSP430F5529

#pragma vector=TIMER2_A0_VECTOR

__interrupt void Timer_A2(void)

{

 // First priority = maintain the time base

 global_time_cnt++;

 // Some app task(s) may execute every time slice

 take_ADC_meas();

 button =checkButtons();

 . . .

 // Other application task(s) execute less frequently

 if ((global_time_cnt % cnt_per_second) == 0)

 displayHHMMSS();

}

How do you exit LPM if CPU is OFF?

 >> INTERRUPTS!

When an interrupt is received from a certain source, the CPU automatically does the following:

1. Finishes its current (assembly) instruction

2. Saves Status Register (SR) and Program Counter (PC) to stack

3. Clears Status Register (set to 0)

4. Loads address of ISR that was triggered from Interrupt Vector Table (IVT), loads it into

PC

5. Execution continues in ISR

6.

Returning from an ISR restores the Status Register to its previous values meaning that

your program will automatically return to Low Power Mode when exiting the ISR!

ECE2049-E20 10-11

void main(void)

{

 WDTCTL = WDTPW | WDTHOLD;

 init_sys(); // initialize system

 _BIS_SR(GIE);

 . . .

 runtimerA2(); // task scheduler runs in Timer A2 ISR

 . . .

 _BIS_SR(LPM0_bits|GIE); // Enter low power mode

 // Arrival of timer interrupt will cause MSP430 to exit low

 // power mode and enable it to execute all tasks within the

 // Timer A2 ISR

 while(1) {

 // Main program loop does nothing!

 }

}

Which LPM you enter depends on which clocks you are using for your scheduling Timer.

 -- Also, on how quickly you need other clocks

>> Low Power Modes are great in practice, but can make debugging painful!

 -- It’s simple so add it last when debugging is complete

 -- Then test to see if '430 is waking and executing tasks properly

ECE2049-E20 10-12

Computing Power Usage: Example

An MSP430F5529 is being powered by a Duracell 2/3A LiMnO2 battery, which has a nominal

voltage of 3V and a listed capacity of 1550 mAh.

The MSP430F5529 is running an application that is in Active Mode for 5.6 % of the time, in

LPM0 for 16.7% of the time, and in LPM4 for the rest of the time.

How long can the application run using this battery?

ECE2049-E20 11-1

Module 11. Intro to Digital Interfaces

Digital Interface: Connection between two or more digital devices.

Types of Digital Interfaces

There are two classifications for how data is transmitted in a digital interface: serial and parallel

Parallel Interfaces = Each bit has its own electrical connection (interconnect, trace, wire)

 >> Advantages = Fast, easier to synchronize (1 clock edge transfers all bits together)

 >> Used almost exclusively inside a CPU (or other) chip

ECE2049-E20 11-2

>> Disadvantage = Each bit must have its own electrical connection

Serial Interfaces – Bits sent one after another along a single connection

 >> Used almost exclusively to make connections off-chip (and off-computer, through

 the Internet, out to the Mars Rover, etc.)

 >> Advantages = Simpler/fewer connections between CPU and peripheral (2-4 lines)

Examples include:

 Device Select/Enable (CS)

 Synchronizing CLK (SCLK)

 Data Line(s) (SDI and SDO)

 Common ground (GND): Often already established if devices are on the same board or IC

 >> “Connection” = PCB trace, wire, RF, acoustic, optical, etc.

 >> Disadvantages = “Slower”, more complicated synchronization, potential timing issues

ECE2049-E20 11-3

How are digital interfaces implemented?

Most microcontrollers contain hardware peripherals that implement the interface in hardware.

On the MSP430, we have hardware peripherals to implement a few types of serial interfaces.

On the MSP430: Universal Serial Communications Interface (UCSI)

 >> Basically acts as a parallel-to-serial and serial-to-parallel converter

 >> Most modern microprocessors/microcontrollers will have built-in Serial interface

 -- MSP430F5229 has a total of four, in two types

 >> Role of Serial interfaces has grown with growing sophistication and speed of

 serial links (SPI and I2C to USB and others)

We will discuss three types of interfaces: UART, SPI, and I2C. There are many more types of

digital interfaces!

What kind of information is exchanged?

Just like in a CPU, information in a digital interface is represented in bits. The interface defines

the manner in which bits are transmitted:

ECE2049-E20 11-4

Types of Interfaces

UART

 >> UART: Universal Asynchronous Receiver/Transmitter

 >> UART mode configures basic 2-wire asynchronous serial communications

 >> Connect to UCSI with 2 external pins (MSP430: UCAxRXD and UCAxTXD)

 >> Not synchronous (no shared clock) = Asynchronous

 >> To use serial communications both devices must know data format and baud rate

• These are set using UARTs control registers

• Implies make data format & baud rate decisions at design time

ECE2049-E20 11-5

UART: Fundamental Parameters

In order to use UART for an application, you need to determine the following parameters:

• Start Bit = 1 bit (“low”)

• Data Bits = 7 or 8 bits

• Parity = Even, Odd, or None

>> Even Parity = 1 when number of 1's including parity is even

>> Odd Parity = 1 when number of 1's including parity is odd

• Stop bit(s) = 1 or 2 bits (“high”)

• Baud rate (bits/sec): Common rates are 200, 2400, 9600, 19200, 115200

RS-232 – “Old standby” for serial format →Actually is a specific standard with

associated voltage ranges and baud rated now often misused to mean any

asynchronous serial communication

 -->Data sent Least Significant Bit (LSB) first**

** Most UARTs send asynchronous serial data LSB first (because RS-232 is LSB first)

 but MSP430F5229 UCSI_A is configurable and can be set to send MSB

 first, so that it can be compatible with various types of serial interfaces.

ECE2049-E20 11-6

Common Baud Rates

Example: How long would it take to transmit “Term is over!” at 9600 baud with 1 start bit 1 stop

bit and even parity assume 8-bit ASCII encoding?

ECE2049-E20 11-7

An Example UART Transmission

What does this mean?

We have no idea unless we know the parameters used for the transmission. In this case, the

parameters are: 9600 baud, 1 start bit, 1 stop bit, and no parity bits.

What data is being transmitted?

ECE2049-E20 11-8

Serial Peripheral Interface Bus (SPI)

 >> Used primarily for synchronous serial communications between a CPU and peripherals

“within the box”

 -- Synchronous = shared clock (supplied by master device)

>> Usually a 4 wire connection (sometimes 3-wire)

 SIMO = Slave In/Master Out data line

 SOMI = Slave Out/ Master In data

 SCLK = Serial Clock (Called UCAxCLK in MSP430 Documentation)

 CS = Chip Select

>> SPI is somewhat loose standard --> Different from I2C

How will you know what to use?

 --> SPI, I2C, asynchronous serial (RS-232), other?

Sensors or other peripheral devices will specify the interfaces with which they are

compatible

ECE2049-E20 11-9

An Example SPI Transmission

From a high level:

If we zoom in on just 8 bits…

What do we need to know to decode this?

CS

SCLK

MOSI

CS

SCLK

MOSI

ECE2049-E20 11-10

>> To use SPI the programmer must...

1) Enable USCI_A or USCI_B for SPI mode (and set pins for function mode)

2) Select data format (data size, clock edge)

3) Configure a clock frequency

When communicating with a device, the programmer must also ...

4) Select desired SPI peripheral using its chip select (CS)

First, what is the function of a CS?

 >> Likely to be multiple peripherals using SPI bus

 >> Only 1 Slave device and Master (MSP430) can use SPI bus at a time

 >> CS is typically an ACTIVE LOW signal implemented using a Digital IO pins

 CS = 0 = Device is Enabled (will read and write to SPI data lines)

 CS = 1= Device is Disabled (outputs are high impedance)

ECE2049-E20 11-11

Example SPI Peripherals

Our lab boards have 2 peripherals that are SPI devices, the LCD screen and the digital-to-analog

converter (DAC). However, we could readily connect others as the USCI pins and some digital

IO pins are available through the headers

Sharp 96x96 LCD Display

Interface Pins

• SPI CS: P6.6 (Digital I/O)

• SPI CLK: P3.2 (Function mode, UCB0CLK)

• SPI SIMO: P3.0 (Function mode, UCB0SIMO)

• Two additional digital I/O pins to provide power and enable LCD (P6.5 and P1.6)

Note: LCD does not send data to the MSP430, so the SOMI line is not used!

MCP4921 12-bit Digital-to-Analog Converter (DAC)

Digital to Analog Converter: Converts 12-bit digital code into an analog voltage (in some

range VRef+ to VRef-). Sound familiar?

Can use this to generate analog signals!

ECE2049-E20 11-12

Example Data format: MCP4921 Digital to Analog Converter (DAC)

How do we connect multiple devices to the SPI bus?

• The “bus” lines (SCLK, MOSI, MISO) can be shared across all connected devices

• Each device needs its own chip select (CS) line, which tells which device when to wake

up and watch the bus for input (or to write some output)

ECE2049-E20 11-13

Inter-Integrated Circuit (I2C)

I2C (also, I2C) is another increasingly common serial interface. I2C provides a synchronous

interface using only two wires!

An I2C interface is comprised of two wires, called the “I2C bus”:

• SCL: Serial clock

• SDA: Serial data

I2C bus fundamentals:

• All peripherals are connected to the same two wires

• Both SCL and SDA require pull-up resistors such that both lines default to logic high.

• Both lines are bidirectional

• Speeds are standardized: typically 100kbps (standard mode) or 400kbps (fast mode)

Unlike SPI, I2C is more rigidly standardized and has strict timing requirements on how the two

lines can be used. There are a few standard operations:

• START

• STOP

• ACK: Acknowledge transmission

• NACK: Negative acknowledgement

Every device datasheet will tell you how and when it expects to receive these commands.

How are devices selected?

With only two wires, we have nothing like a chip select (CS) to wake up individual devices!

In I2C, every device has an address, which is often programmed at the factory.

Before any transmission, the master sends the address of the device it wants to use—the device

should only respond to the request if it has a matching address.

	Module 1. Intro to Number Representations
	Topics
	First things first: Remembering Digital Logic
	Conversion between Bases and Formats: Binary
	Hexadecimal: A common way to write binary numbers
	How do we store negative numbers?

	What about things that aren’t integers?
	Characters
	Unicode Examples
	Non-integer Numbers

	Preview: How is data actually stored in a program?

	Module 2. Data Representations & C Programming Basics
	Topics for Today
	Last Time
	So how are variables actually stored?
	Don't like how ints are different sizes on different architectures?
	Recall: Characters

	C Programming for Embedded Systems
	Terminology: Compilation Process
	Basic data types
	Declaring variables
	Arithmetic Operators
	Logical and Relational Operators
	Bitwise Operators
	Control flow
	If/else statements (also called “Conditionals”)

	Switch/Case statements
	Loops
	While loops
	For loops
	Break and Continue

	The "forever" loop
	More Data Representations
	Arrays
	Strings
	Pointers
	Complex data: structs

	Data representations: Would you like to know more?
	Program structure in C

	Module 3. Of Integers and Endians & Floating Point Representations
	Topics
	Last Time
	Memory organization
	Laying out variables in memory
	Endianness: Ordering bytes
	Important points on endianness
	More memory layout: Arrays
	How do arrays work, anyway?
	How endianness affects arrays (or rather, how it does not)

	Using addresses as data
	How big is a pointer?
	How are pointers used with arrays?
	Working with Pointers

	Memory organization example
	How do you represent fractional numbers in binary form?
	Fixed Point
	Floating Point
	Example: Floating point to Decimal
	Example: Decimal to floating point

	Module 4. MSP430 Architecture & Intro to Digital I/O
	Topics
	Last Time
	Getting to know the MSP430 Hardware
	A general software hierarchy
	A general microprocessor hardware architecture
	How does the CPU work?
	What goes in memory?
	The MSP430 Architecture
	MSP430 Memory Organization
	How are programs stored in memory?
	Why should we avoid dynamically allocated memory?

	Memory architecture and layout
	Mapping Memory
	The Memory Map (found in MSP430F5529 datasheet)
	So what’s the deal with addresses 0010h-0FFFh again?

	Input and Output
	Digital I/O: The Basics
	Digital I/O Registers (Part 1)

	Digital I/O Concepts: Input or Output?
	Example: Buttons

	Module 5. Digital I/O
	Topics
	About Digital I/O
	Pins on the Microcontroller
	Digital I/O Registers
	Important Background: Bitwise manipulation
	Common operations using bitwise operators

	Configuration Example
	An even better way: Lose the "magic numbers"
	Digital I/O Examples
	Example 1: Input and output registers

	Digital I/O Concepts: Input or Output?
	Dealing with Inputs

	Digital I/O Registers (cont.)
	Example: Launchpad Buttons (cont.)
	Polling

	Module 6. Review: The Story So Far
	Module 7. Intro to Clocks and Timers
	Clocks
	Clocks on the MSP430: The Unified Clock System (UCS)
	Configuring the UCS: The Gist
	Configuration notes

	Buttons Challenge (from Homework)

	Module 8. Timers: Theory and Practice
	Topics
	But first… what is a timer?
	Fundamental timer counting modes
	Interrupts
	What does the CPU do when it receives interrupts?
	How do interrupts work internally?

	Timers on the MSP430
	Configuring timers on the MSP430
	Timer configuration example: A stopwatch
	How do we configure the TimerA2 control registers?

	Examples: Using the timer variable
	Stopwatch

	Timer accuracy
	Configuration example: 1ms resolution
	Configuration example
	Another configuration example

	Module 9. Analog to Digital Conversion
	Topics
	Warmup: Analyzing a timer configuration
	Analog to Digital Converters (ADCs)
	ADC Concepts
	Realities of ADCs
	ADCs on Microcontrollers
	Key Concepts for using Analog to Digital Converters
	Thinking about data representations
	Example: Current sensor
	On the MSP430: Using the ADC12
	ADC configuration: Key steps
	Example: Current measurement sensor
	Example: The internal temperature sensor
	More ADC features
	Multi-channel conversion
	Configuration example

	ADC12 Interrupts

	Timer-triggered ADC Measurements
	Aside: Data logging
	Circular Indexing: How it works
	For more information

	Module 10. Operating Modes and More
	Topics
	ADC12 Interrupts
	“Scheduling” ADC measurements
	Polling versus Interrupts Revisited
	Interrupt Priorities

	Operating Modes
	Operating Mode Basics
	Computing Power Usage: Example

	Module 11. Intro to Digital Interfaces
	How are digital interfaces implemented?
	What kind of information is exchanged?
	Types of Interfaces
	UART
	UART: Fundamental Parameters
	Common Baud Rates
	An Example UART Transmission

	Serial Peripheral Interface Bus (SPI)
	An Example SPI Transmission
	If we zoom in on just 8 bits…
	What do we need to know to decode this?
	Example SPI Peripherals

	How do we connect multiple devices to the SPI bus?
	Inter-Integrated Circuit (I2C)

