
ECE2049-E20 1-1

Module 1. Intro to Number Representations
Topics

 How do we store (or “encode”) information in digital systems?

 Specifically: how do we store numbers?

First things first: Remembering Digital Logic

Before we can talk about how computing systems are built, we first need to talk about their basic
building block: digital logic. In digital logic, information is represented in binary bits.

Digital logic defines how we can process information using bits:

First things first: n bits differentiate among 2n things.

Terminology: 1 byte = 8 binary digits = 8 bits (e.g. 10010011)

 ½ byte = 1 nibble = 4 bits

 1 word = 2 (or more) bytes --> MSP430 word = 2 bytes

 1 double word = 2 words (4 bytes on MSP430)

In computers, information and memory space is organized in to multiples of bytes.

But what do the bytes mean?

ECE2049-E20 1-2

The meaning of bits and bytes assigned by convention!

>> Under a given coding convention, a byte can represent up to 28 = 256 things

For example, 1 byte (8 bits) could encode:

 A letter in an alphabet

 One or more decimal numbers

 The state of eight individual things (one per bit)

 An instruction that tells the CPU to do something:

We call these conventions encoding formats. They represent a kind of contract on how data will

be stored and used. As programmers, it is up to us to assign meaning to those bits—which
defines what operations we perform on them.

ECE2049-E20 1-3

Conversion between Bases and Formats: Binary
Positional Number Systems
We write numbers in a positional system, which can be defined as:

For binary numbers, we can write this definition as:

Unsigned integers = All bits used to convey magnitude (whole numbers > 0)

Decimal to Binary Conversion – Successive Division

Note: To differentiate numbers in different formats, we use notation to denote the radix used wo
write it. For binary: 10102 or 1010b; decimal: 101010 or 1010d (or just 1010)

ECE2049-E20 1-4

Hexadecimal: A common way to write binary numbers
Since working in binary can be cumbersome, we often write numbers in hexadecimal, which is
base 16.

 Simple rule for conversion:

 --> 1 Hex character represents values from 0 to 15d using digits 0 – Fh
 DEC BIN HEX | DEC BIN HEX

 0 0000 0 | 8 1000 8
 1 0001 1 | 9 1001 9
 2 0010 2 | 10 1010 A
 3 0011 3 | 11 1011 B
 4 0100 4 | 12 1100 C
 5 0101 5 | 13 1101 D
 6 0110 6 | 14 1110 E
 7 0111 7 | 15 1111 F

If you memorize anything in this class, memorize these!

Notation: Numbers in hex are written as 1010h or 0x1010

Conversion between hex and binary is piece of cake! Just convert each hex digit to a binary

nibble...

 1001 1110b = 158d

Or vice versa:

 8AC4h = 8 A C 4

Note: A modern computer always stores information in binary form. Writing in hex is just a

faster way for us to read and write these numbers—the machine’s representation is still binary.

Ex. 158d =

ECE2049-E20 1-5

How do we store negative numbers?
One way: Sign Magnitude integers = n-1 bits used to convey magnitude with “most
significant bit” or MSB used for sign. Convention: 0 = +, 1 = -

 Note: This format has 2 representations of 0 = +0 and -0 !

Another way: Two's Complement integers = More common format for signed integers. For n
bits, values range from -2(n-1) to 2(n-1)-1

How it works:

 Positive numbers: Follow same format as unsigned numbers

 1026 = 0000 0100 0000 0010b = 0402h

ECE2049-E20 1-6

 Negative numbers: Write magnitude, Complement each bit, Add 1

 -15 =

Range of Values for 2's Complement

0111 1111 1111 1111b
0111 1111 1111 1110b

. . .

0000 0000 0000 0000b

...
1000 0000 0000 0001b
1000 0000 0000 0000b

ECE2049-E20 1-7

Ex: Find the 8-bit two's complement representation of 104 and -80

Ex: What are the decimal equivalent values of these 2's complement values

 0010 0011b

 1000 0011b

ECE2049-E20 1-8

Ex: What decimal value does 8008h represent as an…
 (a) unsigned integer (b) 2's comp integer (c) sign-magnitude integer

ECE2049-E20 1-9

What about things that aren’t integers?

Characters

To handle letters and other displayable characters, we need an encoding format to describe how
we can represent these values in binary. One very common format for this is ASCII (American

Standard Code for Information Exchange), which defines a table of binary codes that represent
various characters.

Note: Other formats exists for representing different types of characters (alphabets and character
sets for all human languages, emoji, etc.). For information on this, see "Unicode".

Unicode Examples
Unicode Name Bit representation Character
U+00FC LATIN SMALL LETTER U WITH DIAERESIS C3 BC ü
U+1F602 FACE WITH TEARS OF JOY F0 9f 98 82

U+1F363 SUSHI F0 9F 8D 83

Non-integer Numbers

In future lectures we will talk about representing non-integer data. These are called fixed-point
and floating-point data types, which we will cover soon!

ECE2049-E20 1-10

Preview: How is data actually stored in a program?

C defines a set of standard data types to store information. Each datatype has a specific

representation, which depends on the compiler and the CPU architecture.

For the MSP430 architecture, the standard datatypes are defined as follows:
int a; // 16-bit two's-complement signed (2 bytes)
unsigned int b; // 16-bit unsigned integer (2 bytes)
long int c; // 32-bit signed integer (two's complement) (4 bytes)
char d; // 8-bit unsigned integer (1 byte)

float e; // 32-bit IEEE754 single-precision floating point value (4 bytes)
double f; // 64-bit IEEE754 double-precision floating point value (8 bytes)

Note that the types char, float, and double have the same size on all architectures–these are

part of the C standard.

We can use these standard datatypes to hold different kinds of information (signed/unsigned

numbers, characters, decimal values), or compose more complex types (like arrays or structs).

Important: The size and type of a variable define the range of values they can represent!

 The value of a variable CANNOT exceed the fixed size of the variable

 Variables will "overflow" or "roll over" if the value exceeds the variable size!

