KC E2Zo1f: [erire // O

Lpee e
= Ao Jaclyt £ /
-) © ~Jeody: S5-=7Ph EQJ (M)
7@69 ﬂ/c]’ / ~ ey
= 297 k7 Dosagan)
— S=7/M DT (Whek)
/dp/«////.rfz/z/g = TonS
T ~ =2l 277 LDy (Wrex)
- KOS Dpu yooay By [J51PA &or = S-/PM Ep7 (Miek)

-

~LAB 2 /5 OruLNE |
— ToctpB Pve s) By NoSTIM tor

= Doep mw “Sreées®: [/ sucestr yvso Comrieve
STHée e //4/ /B RIS LIEEX / LArYy NEYT ot

- fne Stewore pue /oMoy , Jr By T 778

| 2 Jov XAk ovrpmemd LABS (B, LAp /)/ 7
Vo0 Sppvw copzrer mE AU (I 50 RAVE po |

|

Pone (o dpesoy) JO Ler ME AP0 ook STAUY. |

[Cand BE [Flexpe, FT Yoo MY _AJ7enf7”
/JLL LApS 70 Leceve A PASG w6 crRADE!

~ Euum I: [ezppick o0 Cwrvac
~ W Ovews ropdy , € wexr Jous (7%)

—Lxam Z /oFs. Loor For AW Ert e

7(%4)5:/ AL L o

TaseeL L L | 31 | JMEK - Sy = [Axactiri!
M| | =2 U7 Mg Apeue

Ip-2. =P DwwE By Y

My —cvr = /307 /)é“"‘s kf_%

DIV
| [O1,ST6 Sy
oyr= B /301 4! -
(178s74/y)
7(7;.17’ £ 009777237 //é?;'neﬁmfw: Sostel

Aerme
/g" f%u) LoV pMT7L tiree Apps vP 7D Spn

G.008 > (Xdmr mfm.wz'r_c)/ (/ﬁu/;m ’)/Lu; Ktro/cfw)/

Acrvie

()-008 ()(/,;;z,wrrf)/(. Ovyf? 377y — ,005’)/

« 7 ABHRTITE = (P20 /NTERRICLS
o’ 244
/s e swod 0K PATC

JAST Becpusé)5)06 Leronrp <. o Acrude

Oﬁ.
¢ Tow pp WE Do LeAr CToownivel

FAST =7 Skip A -Coppr EVeany
/F20 /T AVAY.

7///(/37(-7 o,
LEAP. Comof"‘z’

/SR (
;)

JF (CEAP_ConT < Ay /F10)}
LEAP- CoorTt/

Jrmer?)

ELSES _
EAP- COD/Ur il 0/
s

porf crumps_Ten on s
gl = Sk

o<
ECE2049: Homework 5

2. (10 pts) For a certain application, Timer A2 has been configured as shown below with the goal of
creating periodic interrupts every 0.005 0.005 seconds.

void runtimerA2 (void)
{
TA2CTL = TASSEL_2 | MC 1 | ID 2;
TA2CCRO = 1309;
TA2ECTLO = CCYE; // Enable timer A2 interrupt

a. Assuming that ACLK, SMCLK, and MCLK are running at their default settings, what is the
exact time between interrupts, t;yr? (Your answer should be close to 0.005 sec.)

b. If the system clock and timer settings from this problem are used to implement some kind of
time-~critical system, how long until the time count is off by 0.005 seconds? Will it be fast or
slow? How do you know?

¢. Write an interrupt service routine for Timer A2 for this application, using a sfngle level of leap
counting to keep the display accurate for longer.

3. (5pts) Consider the following scenario involving a configuration for a timer with periodic interrupts.
a. What is the smallest time interval, ¢;yr, that you could theoretically measure with Timer A2
using ACLK or SMCLK, assuming the default clock settings?

b. Isita good idea to set the timer to that interval? Speculate on why or why not. (We will discuss
the details in class—you don't need to have a correct answer, just think about it.)

Nogr LZTL ppsecnr =

Y
[on SMELR / -

& A 0';}(
/‘L/"”' oy457 7

vﬁéfﬂcuc 4[/‘”"(
%U/.('S de JFon S

/o MM Lo yorrys gﬁrw oo

L /3R ThkE - comean. Faumy OWE Chrys — q
2 /T e MNEVEh. Br e /el ’

ECE2049-E20 Page 2 of 2

ECE2049-E20

Module 9. Analog to Digital Conversion
Topics
e More on timers
e Starting Analog to Digital Conversion

Warmup: Analyzing a timer configuration

1. What is the period of the timer with the configuration below? (How often are interrupts
generated?)

9-1

x{roid runtimerA2 (void) /_’7 ﬂSSL—L- 1 22 .S’MCL/Q
TA2CTL = TASSEILé_[‘ MC 1 | ID 3; Mc./ =2DUP rpor
TA2CCRO = 32767; o
TA2CCTLO = CCIE; // E/r?:glec't‘li-}r:er a2 interrupt /0.3 =7 DIviDE By F
oo '
U oSrC)3
nMERY+)

2. The ISR for the timer above increments a counter called timer on each interrupt. If
timer = 54 47, how much time has elapsed since the timer was started?

/fm‘: /‘ﬁ% ~BhTE L

o

= W = I 2%
/aykﬁ%

L. Fiwp ELAPSED TIME

(294 //uﬂ,ﬂ/wﬂﬂ> (z %m’wﬂ)

g =
(61075,]

ECE2049-E20 9-2

Analog to Digital Converters (ADCs)
Analog to Digital Converters (ADCs), or A/D converters, have become ubiquitous in embedded
applications.

» ADCs return a binary code to represent a measured voltage from within a fixed range of

L
voltages
_.» Small voltages return "low valued" codes, greater voltages return "larger" codes
S“m;, [p /
P Ay 33V 3.3

k) N ANALOE

ConTiNY6J <

4
DiGiTAL 4 ov
For example, within the range of 03V, a 1 0-bit ADC could return codes like these:
L0 0000 0000b = 000h = 0d 22 ¢/

01 1111 1111b = 1FFh = 512d Z7/,%)/]O _
11 1111 1111b = 3FFh = 1023d :3V 2 = /oLy /ﬂofj/ﬂéb
, Copkg
o Itis very likely that you will use an ADC when you take ECE2799, do your MQP, or
work on a robotics project!

I
It

PcC ZA

i [,, 3B /mf/
110+
/o)™
/60
or| o
616 -
oo T
006 l/ ki CAV REFG——wt Fii DI6/7RAL Copel Fﬂﬂ. i

Vour (41 37/50}/0(104y L 04, 101y | sy 0, /WZ
= oo = ,V@,-,_, Sﬁag;m‘?

)11 = Vkert

[MPOT ouTAGE
B
(/,u 1 Zz/ee'Fv,
Cope Vwe = [fLoor ¥ /ZK-/)
/' MCL’F’-} “%@'/’:—
LAUERE (= & oF B/
N ApC
::7 — g
CREATES L NI MAPPIWE Dttt
FI VOIS BeTier) LjeLs /"7“-‘?‘7‘

Moy

ECE2049-E20 9-4

Realities of ADCs

No ADC is perfect-there will always be some error between the analog voltage and the one
measured with the ADC. There are several reasons for this, including:

 Output codes are ""quantized": the closest ADC code will differ somewhat from the
analog voltage, depending on the resolution

» Our MSP430 uses a "sample and hold" type of ADC, which means the analog circuitry
that samples the waveform can "hold" the analog value at a certain level—this means that
it might miss certain changes in the waveform

o Transients from switching circuitry inside the ADC can affect the output code, Which may
introduce some non-linearity in the output values
Lt)“" 9‘7;0 weel -

When sampling at faster rates, these effects tend to get worse!

We will not deal with these issues much in this class, but it is important to know they exist.
ADCs on Microcontrollers
Small ADCs like the 12-bit "Sample and Hold" type ADC on our MSP430 often come standard

on small microcontrollers. 574{ . g oC)
Are they any good? ov /4 0 <

) MDD o,
These ADCs arei(best suited to measuring from sensors with low to moderate data rates with a

Sanpe VI 70 2005/

Jixed dynamic range. Some examples:

Mm%
= ACL&LQMME o

These small ADCs are likely not suitable for applications with higher data rates or a larger

dynamic range. Examples: (ﬁ & UAL) 7Y /4

— Avoro Phocsssme /6 B/7S @ 4y L SpMpLES

As always, however, the apphcatlon will determine the type of ADC you need! Lec
What is dynamic range, anyw: ayl.5 (lry///‘&‘)

ECE2049-E20 9-5

Key Concepts for using Analog to Digital Converters

(or performing any measurements)

1. Full Scale Range !FS B): The maximum range of analog values that can be represented
This is defined as the total range of voltages between Vazr+ and Vrer.

2. Resolution (for a single bit): The smallest change in value that can be measured
You can think of this as the "value of 1 bit" in an output code.

. FSR .
/gfxowrm)) T/ K=# 9 B/irs N _ADC

£ fS/z:B.z/ Res> 25 2k o
Faom cogE N 70 pPt TE Z/fft}wbﬁ’
/S UM OF pesoLvizaw.

3. Dynamic range: Ratio of largest to smallest values that can be measured
The dynamic range is usually expressed in decibels (dB), and can be computed as follows:

DE = 294, (')

for Apcit RIL, "
De- 204,(2")

72,27 A8

ECE2049-E20 #

~— Thinking about data representations

As an embedded systems engineer, you get to decide how to make your sensors interface
with the ADC! Knowing how your external sensor works and how to "map" it to the ADC
you're using is as critical as knowing how to make the MSP430 read the value!

Here’s a way to think about how sensor measurements are represented as digital values:

Sewbon < ——> Auniae < — 7 «p/c’f’w ”
/ 79 587‘);'0"" /W/‘)// @/‘t/d/”
@o/x/ﬂ//‘/ CrredlT
Vasapess Ko

~ Tompumprnt (€) o-28V Fore ADCiZ:
CMM“'W (/)) "'/V ’// o - (211-/)
Acceronprior 7 000k — FFFy
Q/Jm‘ﬂf st e 7 / 'F//
Sewsere s Lprs: P
D \
D/é/ff"
Swsore —— 2 = DB Derz
7 ADE | ir/ﬁﬂ Sone ppppr CODE

i — QY. CoME JMTENSACE

ECE2049-E20 9-7

Example: Current sensor

You can make a simple digital current meter by measuring the voltage across a small sensing
resistor.

Can we use the ADC12 on the MSP430 to measure current in the range O—IA with TmA o
accuracy? How about to 0.1mA accuracy? =

2.5V

For now, let's assume we have an FSR of 2.5V,

+ -
——M/—"—ﬁ

/Zsc)o;b’ LoaD)

l ° /A A
v MY peep /
A7 ¢
O~ A :W ClRcvisRY TO Ger Sacer
e, OVTPUT a9
o (/nczxn’ "@ Rpree ® do
/ / - ~ ety cr rps
— F/LroL
~ETC

C,A» wL Ger / /1/1 Aceurg C/ ? 7 SMULEST cpmse
= 2.5 V " /4 e Cikeysr cpp
ff[_ r 2 EASue.
2.% _2_'/5:’_/:/16/,«% [0~ 0 _ Ak B/
£/

S T sy iV Za e '
CAN e &7 . f A /4660/6/40/-7 yy (/M%ﬂ;"'%’-
o.
FSK

. ,\/ 7’0 //u;?/w/g /Mcz//cﬂc/ T LD pers

ﬁgdrﬂ/cb over= A SHILLER JZ/W E e 6L A
BL7Ten ADC

Ozﬁ;&m;w _OF /;(PC /2 Drnpgion.

%4,2/3-5/

‘ acre (1,SV o 2.5V

/ l 4 Vm{,-wﬁ Ig/ l!é’;?'m-

""—Vk N A

—AZ

: & y g— UK
— STAM

N %

1
3 Cone'’ |
7 E
W [O I

/| A7 ©0-3.3 S
21410 0= Resvers

] 60
L; \‘ /V Ene
51 I
J1EMORy COMTRL JME feor) OUTHI
(Herty) RES15764E (1)

y
CRAWEL Copprse

ECE2049-E20 9-8

On the MSP430: Using the ADC12
Our MSP430 provides includes a 12-bit ADC, called the ADC12.

About the ADC12
e 16 channel, 12-bit sample-and-hold ADC
o Maximum sample rate of 200k samples/second
12 External analog inputs A0-A7, A12-A15; shared with Digital I/O ports 6 and 7
 You configure and use them by setting values in various control registers

Overall ADC operation
An ADC's job is to perform aw_‘?y sampling an analog voltage into a digital value.

The ADC12 has the following components:
o Inputs from analog input channels
o Core unit to perform conversions
o Core configuration registers that configure how the conversion happens
o Can define multiple channels to perform multiple conversions at once
o Memory control registers that configure how each channel should be converted
o Memory registers that store the conversion results for each channel

ADC12 Control and Data registers

You can find the ADC12 register definitions in the MSP430 User's Guide (Ch. 28).
(£21)

MeED 70 Repo/ieire Apcrz
Retrs7tn COA/F/:U,@):{(,US Pur vou
SAsvip By BRI LR l«)/ TRe oS
COF wmnwb W/ _/49@4,./

ECE2049-E20 9-9

~—. Core configuration registers
The ADC12 conversion core is configured using ADC12CTL0 and ADC12CTL1.

ADC12CTLO controls the following options:

Sample and Hold Time (ADC12SHT1x, ADC12SHTO0x): Controls sampling period

Multiple sample conversion method (ADC12MSC)

Reference voltages (ADC12REF2_5V and ADC12REF_ON)
ADCI120N bit: Turns on the ADC12! (It's off by default!)

Enable conversions (ADC12ENC): Must be set to 1 before ADC will perform
conversions! When set to 0, ADC can be configured.

Start conversion (ADC12SC): Starts a conversion!

Overflow/conversion time interrupt enables (ADC120VIE, ADC12TVIE)

~—~._ ADCI12CTL1 controls the following options:

®

Conversion start address (ADC12STARTADDx)

Sample and hold source select (ADC12SHS):

Sample and hold pulse mode select (ADC12SHP): Always set this to 1
Invert signal sample and hold (ADC12ISSH)

ADCI12 clock divider (ADC12DIVx): Typically use 1
ADCI12 clock source select (ADC12SSELX):

Conversion mode select (ADC12CONSEQx): Can select single, multi-channel, or
repeated conversions

ADC12 busy bit (ADC12BUSY)

ECE2049-E20 9-10

Results from each channel are stored in the low 12 bits of one 16 bit Conversion Memory
Register (ADC12MEMXx).

Each memory register has a corresponding Conversion Memory Control Register
(ADC12MCTLx).

Each ADC12MCTLx controls one channel on which a conversion can occur. The conversion
parameters for channel x is controlled by Memory Control Register x, and the result gets stored
in memory register x.

Each ADC12MCTLx controls the following options:
e Reference voltage select (ADC12SREFx): Important settings are as follows:

e Analog input channel select (ADC12INCH_x):

o End of Sequence (EOS): Set to 1 if this channel is the end of a sequence of channels.
Used for multi-channel conversions.

So, as a programmer, what do you need to use the ADC12?

ECE2049-E20

— ADC configuration: Key steps

Step 0: Disable the ADC for configuration

» Before you can modify any ADC12 register settings, conversions must be disabled by
setting ADC12ENC = 0.

Step 1: Select ADC core behavior (ADC12CTL0 and ADC12CTL1)
Set clock source and divider

Configure sample and hold behavior p EFRULTS.

Select trigger source (ADC12SHS)

Reference voltages

C@/(/‘“C/‘]’uwbs thrn ro- Lkerq

~ L&Y 77 wE i
G e AT
~ - 25 U

V,e::/:, = o/
Step 2: Select conversion mode for your application

o Configure using ADC12CONSEQx in ADC12CTL1 register
o There are four possible conversion modes:

Table 28-2. Conversion Mode Summary

ADC12CONSEQx Mode Operation
-ﬁ 00 Single-channel single-conversion A single channel is converted once.
—-—7 01 Sequence-of-channels (autoscan) A sequence of channels is converted once.
/ 10 Repeat-single-channel A single channel is converted repeatedly.
11 Repeat-sequence-of-channels A sequence of channels is converted repeatedly.

{repeated autoscan}

Step 3: Select input channel(s)
o What analog inputs do we need to read?
o Configure using ADCI12INCHx in ADC12MCTLx registers

T Seer e g0 ow e GRIZ 7O VSE

Ao AT, AZ-4s5 Are . /g
OV Eyrsupc pyps

— Zs Nezp 7O o

P ot Foerron mope:

ECE2049-E20 9-12

* Analog inputs AO-A7 and A12-A15 are external analog inputs—these are multiplexed
with Digital I/O pins on Port 6 and Port 7!
o To use them, we need to configure the digital I/O pins for function mode!
Ex. P6SEL | BIT7|BITé6;

o Analog inputs 8, 9, 11 are connected to the various on-chip reference voltages—you can
use these to monitor the "health" of the microcontrolier
o Input channel 10 is connected to an internal temperature sensor (ADCI2INCH_10)

Step 4: Enable ADC interrupts, if desired (ADC12IE register)
» Using interrupts is NOT required, but useful if you are doing repeated measurements
.o Also need to write ISR

Step 5: Enable ADC and start conversions
 Need to re-enable ADC so it will perform conversions (opposite of step 0)
o Start conversion process by setting ADC12SC.
o If not using interrupts, need to poll ADC12BUSY bit in ADC12CTL1 until conversion
—_ has finished!

J 4 Convinsims TAKE 77)‘11:'./ (= 15’0/.,.3)
Example: Current measurement sensor

You can make a simple digital current meter by measuring the voltage across a small sensing
resistor. Can we use the ADC12 on the MSP430 to measure current in the range 0—1A with 1mA

33/

accuracy? (Yes!) How about to 0.1mA accuracy? (No!) >
Assume we have an FSR of 2.5V and the analog voltage is connected to input é(_). (: ?)
O-/A= 2.5/ 1 2.5V
What parameters do we need? /A 7 O-2-5
Jpgr e Ao Seniok] . 1, 5/

/?b):[;;{,awc[{l /:\ 5’5 ’Z, S'I/,/ 3«§V [
\

\
THEre Expmp € &A /(1 El-ﬂj fpwlor~ g /A;)(& 7/
0“\2:‘ l/ :7 ZI 5/ b()U/Lg /‘“/A}T)d/”/u‘ Bk’f

0-7¢ =7 3/ Resocurion):

ECE2049-E20

// Current sensor conversion example

void config adc(void)

{

/* ***%% Core configuration ***** */

'/ Reset REFMSTR to enable control of reference voltages by ADC12

REFCTLO &= ~REFMSTR;

Al

* Initialize control register ADC12CTLC
= 9 => 384 clock cycles; MSC = 0 => no multisample mode
= 1 => Reference is 2.5V, REFON = 1 => Use internel reference generator

* STHOx
* REF2 5V

* ADC120N =

e

ADC12CTLO

*

STARTAD
SHSx%
SHE
ISSH
SSEL
DIVx

* CONSEQx

*/
ADC12CTL1

*

* % % A

b

=> Turn on ADC1l2

= ADC12SHTO0 9 | ADCl2REFON | ADCI2REF2 5V | ADCL20N;

Initialize control register ADC12CTL1

Dx = 0 => Start conversion at ADC12MEMO

i

0

[I
OO0 O

It

=>
=5
=>
=>
=%
=>

Conversion trigger: Start when ADC12SC is set to 1
SAMPCON sourced from sampling timer (default)

Input signal not inverted

ADCl2clock = ADC120SC (~5 MHz,

Divide ADC12CLK by L

Single channel, single conversion mods

= ADC12SHP;

/% *¥**% Channel configuration **%*% */

// Set conversion memory control register ADC12MCTLO
// SREF = 001lb => Voltage refs:
0 => End of sequence not set (not a multi-channel conversion,

// EOS =
nore)
ADC12MCTLO

= ADC12SREF 1 | ADC12INCH 0;

// Set P6.0 to FUNCTION mode
// This connects the physical pin P6.0/A0 to the ADC input A0

P6SEL |= B

70

// Enable the ADC.
// so we can start the conversion.
|= ADC12ENC;

ADC12CTLO

This means we are done configuring it,

9-13

s0 ig-

ECE2049-E20 9-14

o unsigned int read adc(void) {
// Input voltage has range 0-2.5V, which corresponds to 0 to 1A.
unsigned int in value;

ADC12CTLO &= ~ADC12SC;
// Enable and start a single conversion
=== ADC12CTLO |= ADC12SC;

N y/T-

// Wait for the conversion to finish by polling the busy bit
// The busy bit is automatically set to 0 when the conversion is done
while (ADC12CTL1 & ADC12BUSY) {
__no operation(); // Could also just leave the loop empty

}
‘ N warr For Aee v BE pauﬂ./

// Now that the conversion has completed, we can read the result

// from the memory register

in_value = ADCI12MEMO & OxOFFF; // Keep only the low 12 bits

return in value; C;
: &r "

VALUE K ROM OVIRIT f2py iR

Now what do we do with the return value?

/W = VRVVE 2730/‘ WA poet 7RI /{3,44/

S
~ L Cer APC €o0 AS Yo DIz aonpin 2.8V

4
Copr = V/‘" - /V/:‘fv- (ZK—/)
j V/‘&F‘f "/%'ij

M sV 4

730 = %u (272_/) Z MY+
2.8V 2:5- 0

= Andisé . /—0
%) [66b7 Y oM Vivr = 2600
2, &,//W Vousnee —> SeSon Vo= . 3 oy

%u/’ 4 %/f L.)"_Z' CAR (eRiTE™ o z'/,w:,«x_

6667y = 2. 5. /Oézf’ff‘””’“ Y Sewsar
7 v £ BASeD gy Ao //’4/9(/{%/‘//,”‘

:Z: ‘54671551{’4 / fk}zﬂlﬁvz 12»1/0“) o

ECE2049-E20 9-15

Example: The internal temperature sensor

To use any sensor, you need to understand how the sensor output (in this case, voltage)
corresponds to the quantity it measures, which is documented by the designers.

Our MSP430 contains a built-in sensor to measure the internal chip temperature. It has a linear
mapping from voltage to temperature:

A typical temperature sensor transfer function is shown in Figure 28-11 . The transfer function shown in

Figure 28-11 is only an example~the device-specific data sheet contains the actual parameters for a

given device. When using the temperature sensor, the sample period must be greater than 30 ps. The

temperature sensor offset error can be large and may need to be calibrated for most applications.
Temperature calibration values are available for use in the TLV descriptors (see the device-specific data

sheet for locations). C/‘ R Ve 7& 6‘6/-7’
LINEAR. ERodTioN For TEMP,

Vaur-" 2
Gy

0.600 / /"m—\(UA’L JLE fﬂg/ﬂd

T A e £EX /J/'(PLC/ TANIS opre”

Ambient Temperature - °C

-
Figure 28-11. Typical Temperature Sensor Transfer Function /L//AS /AIU /P! gma'f'

0.850

0900 | e

0.850

0.800 |-

Q.750 |

0.700 |

Typical Temperature Sensor Voltage - V

To use the sensor, we need to read some calibration data from the device, which we use in the
computation for the resolution. This information is stored in the Tag-Length-Value Table (TLV
Table), which is a portion of flash memory that contains some device-specific settings and
constants—we need to read from the addresses specified in this table to get the calibration data.
For more information on how this works, see p. 102 of the datasheet.

According to the datasheet, the calibration data provided is based on a 1.5V reference.

ECE2049-E20 9-16

More ADC features

Multi-channel conversion

What if we wanted to read data from two sensors? Consider the following sensors:
 Our current sensor example from earlier (connected to input channel A0, 2.5V reference)
* A barometric pressure sensor (Input channel A4, 3.3V reference)

These sensors require different settings for reference voltages and inputs.

We could reconfigure the ADC every time we wanted to take a measurement, but this would be
annoying. Instead, the ADC12 provides several different conversion modes to solve this
problem. We will discuss the most straightforward: multiple channel, single conversion mode.

To perform readings from two sensors, we will need to use two ADC12MEMx registers, one for
each channel.

Like the previous examples, we need to:
 Configure the ADC12 core, this time selecting multiple-channel, single conversion mode
¢ Configure one ADC12MEMX register for each reading we want to perform with the
appropriate settings for each channel (ie, analog channel and reference voltage)

