
ECE2049-E20 11-1

Module 11. Intro to Digital Interfaces

Digital Interface: Connection between two or more digital devices.

Types of Digital Interfaces

There are two classifications for how data is transmitted in a digital interface: serial and parallel

Parallel Interfaces = Each bit has its own electrical connection (interconnect, trace, wire)

 >> Advantages = Fast, easier to synchronize (1 clock edge transfers all bits together)

 >> Used almost exclusively inside a CPU (or other) chip

ECE2049-E20 11-2

>> Disadvantage = Each bit must have its own electrical connection

Serial Interfaces – Bits sent one after another along a single connection

 >> Used almost exclusively to make connections off-chip (and off-computer, through

 the Internet, out to the Mars Rover, etc.)

 >> Advantages = Simpler/fewer connections between CPU and peripheral (2-4 lines)

Examples include:

 Device Select/Enable (CS)

 Synchronizing CLK (SCLK)

 Data Line(s) (SDI and SDO)

 Common ground (GND): Often already established if devices are on the same board or IC

 >> “Connection” = PCB trace, wire, RF, acoustic, optical, etc.

 >> Disadvantages = “Slower”, more complicated synchronization, potential timing issues

ECE2049-E20 11-3

How are digital interfaces implemented?

Most microcontrollers contain hardware peripherals that implement the interface in hardware.

On the MSP430, we have hardware peripherals to implement a few types of serial interfaces.

On the MSP430: Universal Serial Communications Interface (UCSI)

 >> Basically acts as a parallel-to-serial and serial-to-parallel converter

 >> Most modern microprocessors/microcontrollers will have built-in Serial interface

 -- MSP430F5229 has a total of four, in two types

 >> Role of Serial interfaces has grown with growing sophistication and speed of

 serial links (SPI and I2C to USB and others)

We will discuss three types of interfaces: UART, SPI, and I2C. There are many more types of

digital interfaces!

What kind of information is exchanged?

Just like in a CPU, information in a digital interface is represented in bits. The interface defines

the manner in which bits are transmitted:

ECE2049-E20 11-4

Types of Interfaces

UART

 >> UART: Universal Asynchronous Receiver/Transmitter

 >> UART mode configures basic 2-wire asynchronous serial communications

 >> Connect to UCSI with 2 external pins (MSP430: UCAxRXD and UCAxTXD)

 >> Not synchronous (no shared clock) = Asynchronous

 >> To use serial communications both devices must know data format and baud rate

• These are set using UARTs control registers

• Implies make data format & baud rate decisions at design time

ECE2049-E20 11-5

UART: Fundamental Parameters

In order to use UART for an application, you need to determine the following parameters:

• Start Bit = 1 bit (“low”)

• Data Bits = 7 or 8 bits

• Parity = Even, Odd, or None

>> Even Parity = 1 when number of 1's including parity is even

>> Odd Parity = 1 when number of 1's including parity is odd

• Stop bit(s) = 1 or 2 bits (“high”)

• Baud rate (bits/sec): Common rates are 200, 2400, 9600, 19200, 115200

RS-232 – “Old standby” for serial format →Actually is a specific standard with

associated voltage ranges and baud rated now often misused to mean any

asynchronous serial communication

 -->Data sent Least Significant Bit (LSB) first**

** Most UARTs send asynchronous serial data LSB first (because RS-232 is LSB first)

 but MSP430F5229 UCSI_A is configurable and can be set to send MSB

 first, so that it can be compatible with various types of serial interfaces.

ECE2049-E20 11-6

Common Baud Rates

Example: How long would it take to transmit “Term is over!” at 9600 baud with 1 start bit 1 stop

bit and even parity assume 8-bit ASCII encoding?

ECE2049-E20 11-7

An Example UART Transmission

What does this mean?

We have no idea unless we know the parameters used for the transmission. In this case, the

parameters are: 9600 baud, 1 start bit, 1 stop bit, and no parity bits.
What data is being transmitted?

ECE2049-E20 11-8

Serial Peripheral Interface Bus (SPI)

 >> Used primarily for synchronous serial communications between a CPU and peripherals

“within the box”

 -- Synchronous = shared clock (supplied by master device)

>> Usually a 4 wire connection (sometimes 3-wire)

 SIMO = Slave In/Master Out data line

 SOMI = Slave Out/ Master In data

 SCLK = Serial Clock (Called UCAxCLK in MSP430 Documentation)

 CS = Chip Select

>> SPI is somewhat loose standard --> Different from I2C

How will you know what to use?

 --> SPI, I2C, asynchronous serial (RS-232), other?

Sensors or other peripheral devices will specify the interfaces with which they are
compatible

ECE2049-E20 11-9

An Example SPI Transmission

From a high level:

If we zoom in on just 8 bits…

What do we need to know to decode this?

CS

SCLK

MOSI

CS

SCLK

MOSI

ECE2049-E20 11-10

>> To use SPI the programmer must...

1) Enable USCI_A or USCI_B for SPI mode (and set pins for function mode)

2) Select data format (data size, clock edge)

3) Configure a clock frequency

When communicating with a device, the programmer must also ...

4) Select desired SPI peripheral using its chip select (CS)

First, what is the function of a CS?

 >> Likely to be multiple peripherals using SPI bus

 >> Only 1 Slave device and Master (MSP430) can use SPI bus at a time

 >> CS is typically an ACTIVE LOW signal implemented using a Digital IO pins

 CS = 0 = Device is Enabled (will read and write to SPI data lines)

 CS = 1= Device is Disabled (outputs are high impedance)

ECE2049-E20 11-11

Example SPI Peripherals

Our lab boards have 2 peripherals that are SPI devices, the LCD screen and the digital-to-analog
converter (DAC). However, we could readily connect others as the USCI pins and some digital

IO pins are available through the headers

Sharp 96x96 LCD Display

Interface Pins

• SPI CS: P6.6 (Digital I/O)

• SPI CLK: P3.2 (Function mode, UCB0CLK)

• SPI SIMO: P3.0 (Function mode, UCB0SIMO)

• Two additional digital I/O pins to provide power and enable LCD (P6.5 and P1.6)
Note: LCD does not send data to the MSP430, so the SOMI line is not used!

MCP4921 12-bit Digital-to-Analog Converter (DAC)

Digital to Analog Converter: Converts 12-bit digital code into an analog voltage (in some

range VRef+ to VRef-). Sound familiar?
Can use this to generate analog signals!

ECE2049-E20 11-12

Example Data format: MCP4921 Digital to Analog Converter (DAC)

How do we connect multiple devices to the SPI bus?

• The “bus” lines (SCLK, MOSI, MISO) can be shared across all connected devices

• Each device needs its own chip select (CS) line, which tells which device when to wake

up and watch the bus for input (or to write some output)

ECE2049-E20 11-13

Inter-Integrated Circuit (I2C)

I2C (also, I2C) is another increasingly common serial interface. I2C provides a synchronous

interface using only two wires!

An I2C interface is comprised of two wires, called the “I2C bus”:

• SCL: Serial clock

• SDA: Serial data

I2C bus fundamentals:

• All peripherals are connected to the same two wires

• Both SCL and SDA require pull-up resistors such that both lines default to logic high.

• Both lines are bidirectional

• Speeds are standardized: typically 100kbps (standard mode) or 400kbps (fast mode)

Unlike SPI, I2C is more rigidly standardized and has strict timing requirements on how the two

lines can be used. There are a few standard operations:

• START

• STOP

• ACK: Acknowledge transmission

• NACK: Negative acknowledgement

Every device datasheet will tell you how and when it expects to receive these commands.

How are devices selected?

With only two wires, we have nothing like a chip select (CS) to wake up individual devices!
In I2C, every device has an address, which is often programmed at the factory.

Before any transmission, the master sends the address of the device it wants to use—the device

should only respond to the request if it has a matching address.

