EZ(2
ECEZ0Y7 Lecruee 2

oty
-—Z/zlzg O Jwrrd

- C& JFRCHAINMNG HS/CC

,@/mmwa

e ;_(_/_g__()/ [C@«}awg e M Tuelnd”

“;47,207 Sty Ty AR Sessiao -9 4 Tonf
- Trease Prcoor suE IS Sukik), ESTphes
JF Yoo ANwE Ay SSvel GBIANING yoJR
PRIE —OR. Do Aoy KA Trem JrT

- Senoe 2o pevr muspsy (63) By 7

= Bepord Qvel fexr Sepds /é/ V) 3 wsPrM

- %F/cg APk

= ﬁﬂé"ﬂﬂ&: ol LoeBTE
- Topuy - ST (k)

ECE2049-E21 2-1

Module 2. Data Representations & C Programming Basics

Topics for Today
e More on data representations
e C programming basics

Last Time

e Introduction and Policies
e Data representations for integers

Warmup: How many bits are in a byte?

& B >/ pyrp

ECE2049-E21 2-2

So how are variables actually stored?

Each datatype has a specific representation, which depends on the compiler and the architecture.

ﬂp

For the MSP430 architecture, the standard datatypes are defined as follows: ._\/ I D a2

rint a; // 16-bit two's-complement signed integer (2 bytes) R e
unsigned int b; // 16-bit unsigned integer (2 bytes) 624) /4*Q:‘qukf
| long int c; // 32-bit signed integer (two's complement) (4 bytes) 72<
{char d; // 8-bit unsigned integer (1 byte)

float e; // 32-bit IEEE754 single-precision floating point value (4 bytes)

L double f; // 64-bit IEEE754 double-precision floating point value (8 bytes)

Note that the types char, float, and double have the same size on all architectures—these are part
of the C standard.

Important: The size and type of a variable define the range of values they can represent!
The value of a variable CANNOT exceed the fixed size of the variable
Variables will "overflow" or "roll over" if the value exceeds the variable size!

Example: a char has a size of 8 bits (or one byte), and thus can hold values from
0to2%-1=255.
What happens if we try to do the following?

char ¢ = 253;

char'é_, A

for?(la:=c05r‘z;< 4; a ++) { /ﬂm /

;/ As we run this: //// ///’/
1SSl n s s> i1 IO - /
R IR L T L / |°002 eco, [

exFLw!

This is a very important takeaway about datatypes—you always need to make sure your
datatypes are appropriately sized for your application!

ECE2049-E21 2-3

Don't like how ints are different sizes on different architectures?

" Yeah, me neither. And neither did the people who wrote later C standards. If you include
stdint.h, you can use datatypes that look like these:

#include <stdint.h>

e
uint8 t a; // Unsigned, 8 bit integer (aka char)
uintlé t b; // Unsigned 16-bit integer (aka unsigned int on the MSP430)
intlée t c; // Signed 1l6-bit (2's comp) integer
uint32 t d; // Unsigned 32-bit integer
int32 t e; // Signed 32-bit integer (2's comp)

// Similar types exist for 64 bit integers, and 128-bit on some
architectures...

You are welcome to use these in your labs! /’% %} MR Sbe FHLe
/N LIBrarES,

Recall: Characters

One common format for representing characters is ASCII (American Standard Code for
Information Exchange), which defines a table of binary codes that represent various characters.

Example: in ASCII, the character the decimal value 68 (or 44h), represents the character 'D'.

S AS<) TABLE

In C, we can represent enter ASCII characters using 'single quotes', like so:

char a = 'D'; // Assigning c to the character value of 'D'

SINCLE G WTES. ALl OF TNESE Ay

é}/lazhis:izig‘she same as writing 54}471/ f)‘/b‘ 5}4/)6’
ék/laira = 0x44; LonL TNE Cool /5 ConPlt

g
A

Note: Other formats exists for representing different ranges of characters (like other alphabets,
emoji, etc.). For information on this, see "Unicode".

ECE2049-E21 2-4

C Programming for Embedded Systems

Rule #1: a program will always do exactly what you tell it to do!

Here is an example of a simple C program:
#include <stdlib.h>

void main(void) {
float degF, degC, degkK;

degF = 45.7;
degC = 5.0 * (degF - 32.0) / 9.0;
, degK = degC + 273.15;

}

N WoRIpE RRs o RET]

What does this code do? Is it c)()}ect‘? Is i)t?eful?

Terminology: Compilation Process

When you write a C program and build it, the compiler and l;y_lﬂ are responsible for turning
your code into machine instructions that the MSP430 can execute and arranging your variables,
code, and definitions in the program's memory. The output of the compilation process is an
executable that runs on the MSP430.

Compiler: //KJMJ S(ATES C @ cové /rre /1/46,4///0&: ,Z,éjdp,d} & fon
(MACHINE co/;,g/,df-f 67"&/) (SPecipLizeD foRMAT fort cﬂd)
Linker: Joyns Coupiley FILlS /Mro S/pbLE

EreAt (ymse” ae g upes’”)

Why is it important to know these terms? They will help you debug compilation problems!

N [Rad |5 Bramary
r 3y /
[con]‘—,ZECOﬂP/Léif—ﬂW - /
" GCC 4;2) | ' |
/4¥VA)-<7 /Q}L@K%Z . “iiiiiiiiiiira;;r.
o ~_ [/ DtveceR

LOAD FppRy onrD f1cd

ECE2049-E21 2-5

Basic data types

Our MSP430 compiler users the following sizes for basic data types:

int a; // 16-bit two's-complement signed integer (2 bytes)

unsigned int b; // 16-bit unsigned integer (2 bytes)

long int c; // 32-bit signed integer (two's complement) (4 bytes)

char d; // 8-bit unsigned integer (1 byte)

float e; // 32-bit IEEE754 single-precision floating point value (4 bytes)
double £f; // 64-bit IEEE754 double-precision floating point value (8 bytes)

One of your first tasks when writing a program is creating variables of suitable size for your
problem!

PELMRATION

Decl%'iﬁg variables
int x; // Reserve space for an int. What is x's value?
Lo (i ipizpTi o) YAWE /S owosg mep!!
char z = 5; // Store 5 in 8-bit
L e it e (P WE Ay
char arra > ake space for es
int ints[g] = {1, 2, 3, 41,) 513 //InltlleZlng an array V/(JC)

%{/g EASSIANT 2 Y crone S o 27

.>/: 7(r St & — v Y

Arithmetic Operators

If you've seen C before, you have used these.

Arithmetic Operators: + - * / 5 (% == Modulo, or the "Remainder operator™)

L

u= (x+2z) *y / z; /*y / z is the integer part of the division—truncation!*/

z = 47; OPEHMIINS 6 TNE Dhrisr Vg

fl

y=z/10; J ({7//0 Y @NT&Z&'L OF /WPVTE (0/727174/\)),()
TNESE ARE IMPS, Cop THE

x-zs10, Y74)0:7 B PLSIT Gbr

& Lempmdin_ 7 EWATED.

WNM™ 1F 78I ISPE R
Y% Lt

ECE2049-E21 2-6

Casting is a way to change type of a variable. The compiler will add the appropriate routines to
convert a variable from one representation to another for you.

// Let's say we want to divide an integer to get a
// decimal result?

float a;

int z = 47;

= ((fl'oat)i)/lo.o; // a = 4.7
A ForcE CoppIler- 70 Cowe™ 70 rcrear”

Unary and assignment operators: += - += —= *= /=

These operators are shorthand (also called "syntactic sugar") for other operations:

TAtt; Il 1i=4 4+ 1
Mkt // 3 =3 —1
i+=2; // 1i=1+4+ 2;
k *= 4; // k = k *4;

(These operators are called unary because they only take a single argument (eg, 2 += 5), as opposed to
binary operators, which use two arguments (eg. a + b)

More shorthand with increment/decrement operators: ”5 1O éFFeer ¢
i=5;

arr(it+] = 4; f/ ARRLS 1Y = Jwo Tﬂ/ﬂﬁfc /M/’l?t'ﬂ/

Y O 718 ¢ pE

Be careful with these!

Logical and Relational Operators

7 7“/ /Il-)'-

Logical operators, such as produce a Boolean result (true or false). /4”)’ Aot -2,
But how are Booleans represented in C? / V/"(Uj." ‘s
C@C& Z,

(X)) g 748
IF X s zeno =7 puce /-
/17 4 1S M Zens s> RIE g

— C Dow’sT MNME A Pooicin
T By Peppver

Sl AN vt Srppon r0 <R >
dpp A Bon&oWd 7¥Fg, o MRE S0/E . G0,

ECE2049-E21

Relational Operators: >, >=, <, <=,

P

2-7

These operators return a Boolean (1 or 0) result:

if

T

(x > y) {
zZ =z - X3
} else {

‘X =z - y;

}

while (x
/7 ..
}

=0} {

while(z < 5)
/7.
}

{

while (count)
count——;

(. ..
}

{

LooP WHNILE Ccowr > o

Logical Operators: ss (AND), ||

(OR) ,

(EQUAL), !

=

(NOT)

if ((3 == 0)

77 uws

Il (x < 100))

{
}

canContinue = 1;

while((i < 5) && (canContinue)) {
I s ’
canContinue

}

0;

\ Avwss] V€ popie kg

P chEk Equiesyys

wleS

rl

JF(X=2Y)5 Ymee 16 % puo

/ A T
SARE s 06

¢

T LyLe Per
Do WNAT 3,
CIANT

(’ INSTEAY STARES

Y e y

ECE2049-E20

2-8

LA ABour / 87 /)1 oce
CU’"‘}'—' /

i P

N °T WY TRUE

Bitwise Operators
' m systems-level (and embedded) programming, we often need to operate on individual bits of a
variable.
%)y | Xék
O O (6]
o) o
Bitwise Operators: & (aND), | (OR), ~ (NOT), “ (XOR), I 0
>> (Right shift), << (Left shift) o
L1 /
These operators operate on each bit of the data type (hence, bitwise):
Char a = 0x85; //,1000' 0101b
char b = 0xFO; '// 1111 0000b N
{:?’zar k = <:3t'& (o3 U;fFUL 4
_ 4 L
By oose. 0L et s
> ol UL "
a K JJooo] 0000 => MAse (a6 ¥
4¢2 Ooy o0
char m = k >> 2; >é . "'-)I /00 ® m
/000 00060
/(_._ 57 WHAT /F/ L ?)au.’
K272 pol o - Slepep
o /”r L & O}‘ CO
©90
ﬁ“ 1 ()OOO é
Birowse Yor Al @0 oo
L 772 // /! Q0090
char ¢ = ~b; //’-' '
B (11 Goo°
. SIPCE S/6p BT LOAS LT
oy /- } Ocoo [1] '

p TR &P T S)pE 13 T20pig
W% 7o A o 2%

,ﬁﬁ?&ﬁﬁfg TP FortAT =7 SJp) exgansyon

ECE2049-E21
Control flow

If/else statements (also called “Conditionals”)
Used for making decisions:

2-9

if (k > 100) {
tk = 0;

} else {
‘k += 1;

}

Alternate form for small statements, the conditional operator (also known as the fernary
operator):/

|k = (k >100) 2 0 : k + 1;
o

[—

-
L

You can also have many conditional blocks:

if(x > 0) {

y++;
doSomething(x, vy):
} §lse.if ((x > 0) && (y !'= 2)){
y = 100;
17 e
} else if(x > 100) {
£ 8. ’
} else {
P

}

NOTE: Brackets around your if/else statements (or loops) are not required, but you should
always use them!

See % "oy Ear” Bué.

IEC)

&oT O }3)4/47/
/F

o7 0 ﬁe{/’-;

1F()
Goro FAIL/

ECE2049-E21 2-10

Switch/Case statements

X = getValue():;

switch (x)
{ »
case l: // if x == 1
doSomethJ_ng(x, V) K”/V a,
y = 0; L~ UNTIL Brepr
break; // Must have these at the end of each case. Why?
cade 2: // if x == 2

doSomethingElse () ; //C /0” /705}/‘, /rm diel

break;

: e g e lf
case 12: // 1if x == 12
dogomeotherThing(); 64‘4 W/W m 7.)05 A}e‘fr C/‘ f&,

break;

default: // For all other values
break;

}

Case statements can be useful for making decisions about a single value. They can also be useful
for implementing complex control structures like state machines, which we will discuss later.

Loops

While loops
Can use to iterate over a set of values:

1 = start value; ‘/A.)'\) AS womré A,(Cwlflﬂd

while (i < end value) { 74 7(”&/
/* Body of loop */
FE s
i++;

Example: How many times will the body of the loop execute?

\

int a = 32;
whlle(a > 0)
] Sé— A PINT(R)

b’

Facn /mzmM'J

A*IL A/

A2 Sz Leop emps AFTIR
Al s 7 sramprions,

A =&

8

%4

ECE2049-E21 2-11

Can also use a while loop to wait for something:

int data is_ready = 0;
while(data_is_ready != 0) // Stay in loop until data is available
(<
data_ils_ready = get datal();
}

// After the loop, use the data
do_stuff with data();

For loops

For loops are a different syntax for a simple while loop (like the first example):

int i;

J
forg‘i = stglrjt_value; i< erggfalue; (1+2+) @ Sﬂﬂr pr/ﬂol/

{ /* Body of loop */ eno Corlosyrop
) ’ i ' Row 7/t THiwé O

LA (7ERAT700)

Break and Continue

The break keyword will exit the current loop. The continue statement will skip the rest of the
current iteration and start the next one.

int i; int 1i;
int data[1007; int data[100];
for{fi = 0; i < 100; i++) fbr(i = 0; i < 100; ji++)
{ : fb{
if (check input(arr[i]) == -1) { if(check input(arr[i]) == -1) {
break; \L,_, - «continue;
K\ — }
do_ thing(arr([i]); do thing(arr[i]):
} , }
N/ - // .

L. &PD JroCessIvg lzx, SKIP SoMery,

ECE2049-E21 2-12

The "forever" loop

Infinite loops are not often desirable in programs. However, embedded programs use them all
the time in certain circumstances, like your main function.

void n}ain (void)

{ <
I/*’ Initialize variables, do setup tasks */ / SZYUP{)

while (1) {
// Perform tasks that your device needs to do!

. R 2oop()

We will discuss more about how to write programs using this paradigm later.

JF S USE_Arpuino!
e
gﬁfﬂ/’()/
—ZJIV/""’[/) {
Loop(),

7N

ECE2049-E20 2-13

More Data Representations - T KT [F p0, TRV 22 FEAp 87~
JHE ExY EF /A/ eRAY

C el JUST TRy 79 READ THhe MEMORY

Arrays TNERE — /7~ ~CoD Conrpw ANYSRyué/
Arrays are contiguous group of a certain data type, stored sequentially: =

// Declare an array of 10 ints \»
int a[10]:

s

4 In:iti‘-_ia—;ize an array ARe rﬁéj A , ldz T'A} ‘w
y —

int arr(4] = {1, 2, 3, 4}:
»

L7 Y
£/ “Indexing” an array
int‘a@ = arr{0]; é-i‘ F,ﬂ’f l

int al = arr[l];

int a_last = arr(3];

e

2 2 —

Al

int *arr ptr = arr; // Name of array is pointer to its first element
E—— : ;

N

Strings (t‘ LIE gL ?Lk ﬂW‘/fay‘

In €, we can also define arrays of characters using "double quote", which make up groups of 77‘// 4

displayable characters.
Convention: C-style strings (or “null-terminated strings™): arrays of ASCII characters followed
by a special byte called a null-terminator (which has value 0x00, usually written as *\0").
. » s A 5 - , . - +
When you type a string in “double quotes,” a null-terminator is automatically included.

The null terminator is used to tell functions that operate on strings when it reaches the end of the
string.

For example, we can represent the string "ECE2049" as follows:

char *str = "ECE2049"; // The string "ECE2049"
[3 b4 °

] ® .

,OLL Oﬁ -hu.i‘f

// This is the ‘same as writing out each character in array form
char str[8] = {'E', 'C', 'E', '2', '0Ff, 4, '9r', W\07}; i P
58 AE sy
// Or we could write out each character in decimal or hex. a
char str[S} 2 {. *E’, !C‘, VE(’ 121} h:}*r 1411 !91’ \\‘@r};
char str(8] = {0x45, 0x43, 0x45, 0x32, 0x30, 0x34, 0x39, 0x00};
)

puos

// All have the same meaning, we are just entering them differently!

We will discuss strings in more detail later, but you should know that they exist since you will
see them in lab. You should also know about the existence of null terminators.

/-—

ECE2049-E21 2-14

Pointers
A pointer gives the location of something of in program memory—this is also known as a
memory address. We will discuss pointers in further detail later.

&

Complex data: structs

We can define complex data types called structs, which are composed of other data types:

// Defining a struct
structpoint {

" it x;

int y;

brot

// Declaring variables of type “struct point”
struct point pl;

// Setting and accessing members of a struct

pl.x = 5;
pl.y = 2;
// . .
struct point p2 = {1, 2}; // Declaring and initializing a struct

int z = pl.x + p2.x;

We will discuss these in more detail soon.

Data representations: Would you like to know more?

In the next segment, we will talk even more about data representations!
e Representing fractional numbers: fixed-point and floating point

e Machine code: the compiler turns your C code into a binary format to create instructions
the CPU can understand

ECE2049-E20

Program structure in C

In C (as in other programming languages), you can separate your programs into a series of
smaller functions to complete certain tasks.

2-15

tdefine MAX BUTTONS (4) // Constant for the number of buttons on the board

int some value; // Glebal wvariable (visible to whole program)

// Function prototypes ¢ F[/A}C’TIOU vapd

| int check_button (char button id); .
=[RS
_—; void set_led(char led id);

VisiBLe

® // Function definition
int check button (int button_id)
{
int button_state = 0; // Local variable for this function

*// ...actual function body goes here...

return button state;
}

// Need to implement other functions too!

FUNCT 0005 Ate
? psr op e

volid main{void)
2
/{ Variables local to main
A L
int i, butten; <— CAN Deécides e pgLEl / Ay ocope
serufP ()
while (1)
{
: of0r (i = 0; 1 < MAX BUTTGNS; i++) {
-T;$> *int button = check button(i);
if(button == {
set led{(i};
| e
!
// Do other things.. perhaps wait for a while?
i
}
SET_LEDE)

