
ECE2049-E21 3-16

Module 3. Of Integers and Endians & Floating Point

Representations

Topics

• Memory organization and endianness

• More data representations: overview of floating point

Last Time

• C programming basics

• Data representations for characters

Warmup: try the following…

int z = 0x4007;

// a. What is the size of z (in bytes)?

// b. In C, how is z stored (unsigned, sign-magnitude, 2’s comp)?

if (z & 0x8000) {

 alpha();

} else {

 beta();

}

// c. Based on the value of z, which function would get called?

ECE2049-E21 3-17

Memory organization

What does it mean to type “int a” in C? This is called variable declaration, which allocates

space in the program's memory to store an int.

What do we mean by memory? You can think of memory as a big table of "addresses" that each

map to a certain piece of data. This data could be a variable (as above), or it could be a piece of

code, a portion of the hardware, etc., but for now let's focus on variables.

On the MSP430, addresses are 16-bits long, and each address refers to one byte.

Recall that the MSP430 is a 16-bit architecture,

Unfortunately, this is no longer completely true! Newer MSP430 variants (like ours

MSP430F5529) utilize 20-bit addresses. Why?

ECE2049-E21 3-18

Laying out variables in memory

When you declare variables in your program, they are arranged in memory starting at a certain

address. For now, it is sufficient to know that variables in main start at address 0x4400. We will

discuss why in an upcoming lecture.

When variables are declared, they are (usually) arranged in order from this starting address.

For example:

char a = 0x11;

char b = 0x22;

…can be arranged in memory as follows:

Address Data Variable

In our class, we will arrange memory in a table like the one above, with the starting address at

the bottom. We use this convention because we are typically representing variables on the

program stack, which starts at a fixed base address and grows up.

ECE2049-E21 3-19

Endianness: Ordering bytes

In the previous example, we have left out an important detail. How do you store variables that

are larger than a byte?

As declared on the MSP430, a long is has a size of four bytes:

long v = 0xAABBCCDD; // AAh is the most significant byte (MSB), and

 // DDh is the least significant byte (LSB)

For multi-byte variables, we have a choice–do we arrange the data with the least significant byte

first, or with the most significant byte first? Which is correct? Does it matter?

This concept is known as endianness, which governs how a processor orders bytes in memory.

There are two forms of endianness:

Little Endian (LE)

 Little Endian stores the least significant byte first, meaning that the memory in this example

would be arranged as follows:

Address Data Variable

0x4403 AA

V
0x4402 BB

0x4401 CC

0x4400 DDh

Big Endian (BE)

 Big Endian stores the most significant byte first, as follows:

Address Data Variable

0x4403 DD

v
0x4402 CC

0x4401 BB

0x4400 AAh

ECE2049-E21 3-20

Important points on endianness

• Endianness is a fundamental part of the architecture's design. When a processor is

designed, it is designed to use a specific byte order–you cannot change this with a

compiler setting.

• Is one endianness better than the other? No, they simply reflect different design choices.

• Big endian is read "left to right", which is intuitively easier to read for those accustomed

to languages written left to right

• Little endian makes it easier to slice out small portions of a variable (eg, what if you only

want the first byte of a long?)

When will you deal with endianness?

Endianness becomes especially important when you need to transfer data between different

architectures. Examples include any stored data format or network protocol.

ECE2049-E21 3-21

More memory layout: Arrays

How do arrays work, anyway?

In C, we can declare arrays and use them as follows:

// Declare an array of 5 bytes

char arr[5];

// Declare an array of 5 bytes, and initialize it (set it with some initial values)

char arr[5] = { 0xAA, 0xBB, 0xCC, 0xDD, 0xEE };

// You can access elements of an array by "indexing" into it

// In C, array indexes start at 0

char c = arr[0]; // The first element

char d = arr[4]; // The last element (arr has size of 5, so last index is 5 - 1 = 4

You can think of the elements of the array laid out like this:

Index 0 1 2 3 4

Element

Value

Why is it important that array elements are contiguous? (And must contain elements of the
same type?)

What would happen if we tried to get the 6th element of arr?

ECE2049-E21 3-22

How endianness affects arrays (or rather, how it does not)

A fundamental property of arrays is that their elements are stored contiguously in memory in

order of their index (as discussed above).

Endianness does not change the order of array elements.

For example, if we laid out the array from the above example on a Big Endian (BE) and a Little

Endian (LE) system, it would look like this:

Address BE LE

0x4404

0x4403

0x4402

0x4401

0x4400

However, endianness does affect the ordering of the bytes in each element of the array! In the

previous example, the elements were just 1 byte each!

Example: an array of ints:

int iarr[2] = {0x1122, 0x3344};

Here, the memory would be organized as follows:

Address BE LE

0x4403

0x4402

0x4401

0x4400

ECE2049-E21 3-23

Using addresses as data

We can also have variables that contain memory addresses. These are called pointers.

You can get the address of a variable with the “address-of” operator (&):

long v = 0x11223344;

long *pv = &v;

In this example, we say that pv is declared as the type “pointer to long,” which is indicated by

the “*” before the name pv.

How big is pv?

,

What is the value of pv?

We can lay out these variables in memory as follows:

Address BE LE

0x4405

0x4404

0x4403

0x4402

0x4401

0x4400

ECE2049-E21 3-24

How big is a pointer?

A pointer is the size of a memory address for a given architecture. On the MSP430, an address

has a size of 2 bytes (16 bits).

Type Size (bytes)
int
long
char
long long

Type Size (bytes)
int *
long *
char *
long long *

This is one way in which pointers are powerful: a pointer can represent a larger data structure in

the program—by passing around the pointer, we can avoid copying or moving the larger data

structure.

How are pointers used with arrays?

Whenever you use arrays, you use pointers. Consider the following example:
int iarr[10];

int i = iarr[5];

When you index into an array, the program actually does the following:

int i = *(iarr + 5); // Equivalent to writing iarr[5]

Here, the * is the dereference operator, which gets the value at the given address. This is

called dereferencing the pointer—it is the opposite of the address-of (&) operator.

ECE2049-E21 3-25

Working with Pointers

Pointer math: When performing arithmetic operations on pointers, the address changes in

increments based on the type of the pointer.

// Example 1: array of char

char carr[4];

// How big is the array?

// Say the starting address is 0x4400, what is the address of carr[3]?

// Example 1: array of int

int carr[4];

// How big is the array?

// Say the starting address is 0x4400, what is the address of iarr[3]?

Passing arrays: Further, when you use the name of an array (either to store or pass to a

function), you are passing a pointer to the first element of the array. This is the “starting point”

of the array used as input to calculate the index.

int *ptr = iarr; // Could also write &iarr[0]

do_thing(iarr, 10); // Same here

void do_thing(int* arr, int size) { // Function takes pointer to array (+ size)

 // . . .

}

ECE2049-E21 3-26

Memory organization example

Here's a larger example of memory organization. How would we organize the following

variables?

unsigned int a = 0x00FF;

long int b[2] = { 65540, -5 };

char c = 'c'; // 'c' = 0x43

How many bytes of memory do we require?

ECE2049-E21 3-27

So using the above information, we can make our table:

Address BE LE

0x440C

0x440B

0x440A

0x4409

0x4408

0x4407

0x4406

0x4405

0x4404

0x4403

0x4402

0x4401

0x4400

ECE2049-E21 3-28

How do you represent fractional numbers in binary form?

So far, we have only expressed integer values in binary. There are two conventions for

representing fractions: fixed point and floating point.

Fixed Point

In a given data type, we can define a binary "radix point", which is a fixed point that denotes

fractional bits.

In this format, the precision of the number is defined by the number of fractional bits.

For example, 4 fractional bits = 2(-4) = 0.0625 is the smallest fraction you can represent

Often, fixed-point representations are stored in scaled form as integers–it's up to you (the

programmer) to treat them as fixed-point values.

ECE2049-E21 3-29

Floating Point

Floating point is an IEEE standard used to approximate real-valued numbers to a certain number

of decimal places.

There are two forms, single precision (32 bits) and double precision (64 bits). Each

representation has three components:

• A sign bit (S)

• An exponent (E)

• A fractional part (F), which is also called the "mantissa" or "significand"

Format for single precision: S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

Exponent is 8 bits, fractional part is the remainder (23 bits)

Value = (-1)S * 2(E-127)*(1.F)

Example: Floating point to Decimal

What is the decimal equivalent of the floating point variable CAAA0000h?

ECE2049-E21 3-30

Some features of floating point:

• Effective range: approximately +/- 1038

• Single precision has ~7 decimal digits of precision

o Double precision and others have more

• Special representations for +/- infinity, NaN

• Standard has conventions for rounding, normalization, etc.

Example: Decimal to floating point

Represent -5.375 as a single-precision floating-point number.

