ECE2049-E21 3-16

Module 3. Of Integers and Endians & Floating Point

Representations
Topics
e Memory organization and endianness
® More data representations: overview of floating point
Last Time
e C programming basics

® Data representations for characters

Warmup‘ try the following...
11g = 0x4007;

a. wh

at is the size of z (in bytes)?

// b. In C, how is z stored (unsigned, sign—magnitude,?

if {z & Qx80084 {
pha¥() ;
} dlse {
‘beta();(-:—-—
o

// c. Based on the value of z, which function would get called?

% 7 @/00 Q0O d DOCO O/ 4
g /Ood Qoo QO 00 Q%0 0O
pOOﬁ 0002° 0606505 (06O,

BETAC),

%
V)
o
o
[

757 JF A 3/77)@‘? Are (g P

<
" MASKI NG ?

ECE2049-E21 3-17

Memory organization

What does it mean to type “int a” in C? This is called variable declaration, which allocates

——

space in the program's memory t0 store an int.
What do we mean by memory? You can think of memory as a big table of "addresses" that each
map to a certain piece of data. This data could be a variable (as above), or it could be a piece of

code, a portion of the hardware, etc., but for now let's focus on variables.

On the MSP430, addresses are 16-bits long, and each address refers to one byte.
B]

Recall that the MSP430 is a 16-bit architecture, Apoe s) M LUE (ATH)
y Oxg000 /24

(2% pocsige Appests ﬂ)// B)re)
= GSS3 By ‘
= g1 KiB|

(! KiB =) O2Y BY&S)

A
f. ¢ y (6 7t / By7E
’ ;r (€ 8r%)
;- s

Unfortunately, this is no longer completely true! Newer MSP430 variants (like ours
MSP430F5529) utilize 20-bit addresses. Why?
R T ———,

» EXTNDLD ADDRMS Spuce)
7 = IMIB NARpwARE Chldnge

(M5P720X) OF wwl” oA Ly 7
v

ECE2049-E21 3-18

Laying out variables in memory

When you declare variables in your program, they are arranged in memory starting at a certain
address. For now, it is sufficient to know that variables in main start at address 0x4400. We will
discuss why in an upcoming lecture.

When variables are declared, they are (usually) arranged in order from this starting address.
For example:
MAINC) S

char a
char b

bxll;
0x22;

n

: pY Con/e’rion)

...can be arranged in memory as follows:

Address | Data | Variable / B UL// AT zor7oNn
O ?70/ 2Z4| B OF BLE o
Gpffoo | 714 | A 4 F g

e il ur

In our class, we will arrange memory in a table like the one above, with the starting address at
the bottom. We use this convention because we are typically representing variables on the
program stack, which starts at a fixed base address and grows up.

=

y £
THE Space Srme LWk Aemary Used PBY Fuweriow AL

Hawl)/ .

ey fB R B L
vy !
F(>/ ¢e)

JY4]
S

{

FL)!
CHAR ¢
& FO

ECE2049-E21

Endianness: Ordering bytes

3-19

In the previous example, we have left out an important detail. How do you store variables that

are larger than a byte?

As declared ¢n the MSP430, a long is has a size of four bytes:

long v = OXEBBCCD,D'; // AAh is the most significant byte (MSB), and
—— > " '“C // DDh is the least significant byte (LSB)
7
M5B LS8

For multi-byte variables, we have a choice—do we arrange the data with the least significant byte
first, or with the most significant byte first? Which is correct? Does it matter?

This concept is known as endianness, which governs how a processor orders bytes in memory.
There are two forms of endifinness:

Little Endian (LE)

Little Endian-stores the least significant byte Jfirst, meaning that the memory in this example

e
would be arranged as follows:

Big Endian (BE)

Big Endian stores the most significant byte first, as follows:

_JsB
Address Datsy/ Variable
0x4403 |an —
0x4402 |BB
0x4401 :cc v
0x4400 | DDh
M 74 p\
Address | Data | Variable
0x4403 | DD Q/L}'B
0x4402 |cCC
0x4401 | BB v
0x4400 | AAh

N s

LE LOOKs ‘pur oF
OLpye gy o5
FEAO LEFT = zrnr

BE Lok 1 10 gupp”
VR Ricapyy

LEFT =L 1447

ECE2049-E21 3-20

e,

Important points on endianness

* Endianness is a fundamental part of the architecture's design. When a processor is
designed, it is designed to use a specific byte order—you cannot change this with a
compiler setting.

e Is one endianness better than the other? No, they simply reflect different design choices.

* Big endian is read "left to right", which ﬁltuitively easier to read for those accustomed
to languages written left to right

e Little endian makes it easier to slice out small portions of a variable (eg, what if you only
want the first byte of a long?)

When will you deal with endianness?
Endianness becomes especially important when you need to transfer data between different
architectures. Examples include any stored data format or network protocol.

-

Lx,
- LE: MTOO, A&k

ﬂ/:’j % Zgwmfc/ X7 Cr/I7S

% "WETWORK BYTl ordsr’
(/PTEMET Frehrrc)

é;/,) JAess MTers For— AL Jlerappsg
By (oK DR S SRR s MSFRes)
[ermsen Shrerc

65/4 & qu/t/b; NEToon frerec B
LIRE e)

A

Here is an example of being Endian-ed!

A nice plot of a file of unsigned integers as created on a little endian machine.

Imponant Test Signel - 232005
T ¥

1B8DDO

Y8000

14000

B n
: i

L A Couls {D0I02A mVieound)

< 5
e Time (saconds)
-

PR 2 » -

Below is a plot of the same data file having being read in as unsigned integers on a big
endian machiné. The data is good! It is the same as abovel All that has changed is the

endianness of the machine that read the data,

Test Signal as Received?
T T T

//@Aﬂ BJCE]

AD Counts

Time (seconds)

The table below shows the first few unsigned integer values from the data file created on
the little endian computer as read by both of the machines, The byte swap is evident in
the hexadecimal valueg, — =

—

_— = Y .
Read as Little Endian Read as Big Endfan\:!

8178 [tEF2 1 61983 FJRh
8193 2001 h 288 -0120 h
8194 2002 h 544 0220 h
8182 1FF6 h 63007 F61F h
8201 2009 h 2336 0920 h
8201 2009 h 2336 0920 h

' ¢ i ~ B 'DG_SZ'@\Z
EMD{ R~ 2ESS L Pa&,\“ + C“‘\; M VEres iC}p'_&&“_ﬁ55‘:’

{\j@t o TQUi-"LC/\é?,CJ‘V\ Q‘Q \‘L//‘\-e @S “‘f"/

ECE2049-E21 3-21

More memory layout: Arrays

How do arrays work, anyway?

In C, we can declare arrays and use them as follows:

// Declare an array of 5 bytes
char arr[5]; ’
// Declate an array of 5 bytes, and initialize it (set it with some initial values)
char arr[5] = { OxAA, 0xBB, O0xCC, 0xPD, OxEE };
L}]
// You can acce;s elements of an array by "indexing" into it
// In C, array indexes start at O
char ¢ = arr[0]; // The first element
char d = arrfd]; // The last element (arr has size of 5, so last index is 5 - 1 = 4

—]

You can think of the elements of the array laid out like this:
Index -0 1 2 3 4

Element 74')70350:(ARRLT | prkie] | dre(s] ARAC]

Value | 44 | BB | ¢¢ po_ | &€
o 41o) tror (103 yyor

Why is it important that array elements are contiguous? (And must contain elements of the

same type?) f B ,
LLnV]
74/ z 240 # () # Sizene 24)) | Ol)
» /r ’—-—~/—\\\] é_"/’d ,(// ll//[;pdl‘{_(
A% Loprs $/Z¢oF CONSTMVT iy

ONE (gpppa (W0 SEARpg)

iy 4
What would happen if we tried to get the 6 element of arr? U peMOR 7 ALY

]4IZK[/000<3_7. =z 7 /-’ C pod o7 HAE?)

TS 18 PG RPN LI READ [oAATIvE

7 TRAT MK BT T W e !
DITA (S ;A/m AT I wT) g Ovexpion
Cecvrr) [ossh

o Lnrer eek N

-~

ECE2049-E21

3-22

How endianness affects arrays (or rather, how it does not)

A fundamental property of arrays is that their elements are stored contiguously in memory in

order of their index (as discussed above).

Endianness does not change the order of array elements.

For example, if we laid out the array from the above example on a Big Endian (BE) and a Little

Endian (LE) system, it would look like this:

Address | BE | LE
0x4404 EF té
0x4403 DD |pp
04402 [ce [ce
0x4401 BB F/}
2 0x4400 74,4) ’4,4

ARRCHD

ARE(6]

However, endianness does affect the ordering of the bytes in each element of the array! In the

previous example, the elements were just 1 byte each!

Example: an array of ints:

| int darr[2] = {0x1122, 0x3344};

B

Here, the memory would be organized as follows:

(ARR{;]

Address ‘BE LE
0x4403 ‘77 33
ﬁ 0x4402 L 1/1/
0x4401 [, |)
OX44OO // Z,L

] /ﬂfle[oj

—

—

ECE2049-E21

Using addresses as data

3-23

We can also have variables that contain memory addresses. These are called pointers.

You can get the address of a variable with the “address-of” operator (ﬁ):

)éa Lo W/ PonTikd A THE ﬁ/‘?i’./

/'Y

long v = 0x11223344;
t,,-,'——.————\

long ’;pv ="&v;

In this example, we say that pv is declared as the type “pointer to long,” which is indicated by
the “*” before the name pv.

How big is pv?

; fV NoDS g ove pumor) \pppsss
OF Mo — 2 Byt (vt Birs)

What is the value of pv?

— SpeTIvG APoresc o

We can lay out these variables in memory as follows:

yr =

Address | BE | LE
0x4405 | pp Y7
0x4404 1/ ®0
0x4403 [y¥ [
0x4402 [93] 52
024401 |42 33
__% ,0x4400 TRKZ

&v - ouffoo

=

1
T

v

PV esTAmS
Vs APDRES /
/N7 (7%
CoWTEwr(

ECE2049-E21

How big is a pointer?

3-24

A pointer is the size of a memory address for a given architecture. On the MSP430, an address

PLE NAVE T came Stzel)

has a size of 2 bytes (16 bits).

Type Size (bytes) T Size (b _
ot ol L r)lffe* ize 7& ytes) C o e
long i long * 2 -f/d/lg
char

/ chagp * v z)
long long | y iohg Tong > Z y)/ff[/[

This is one way in which pointers are powerful: a pointer can represent a larger data structure in

the program—by passing around the pointer, we can avoid copying or moving the larger data
structure.

"vase Br peperence’

How are pointers used with arrays?

Whenever you use arrays, you use pointers. Consider the following example:
int iarr[10];
int 1 = ijarr[5];

A\
When you iﬁe/x into an array, the program actually does the following:

Lint i = *(iarr + 5); // Equivalent to writing iarr[5] 1
3 N

Here, the * is the dereference operator, which gets the value at the given address. This is
called dereferencing the pointer—it is the opposite of the address-of (&) operator.

CET TWE DATA AT THIS Mer) /w/é\é’ﬂ
£7 T QTR A

{

JARR. = Bace dopeel = G /Aerle]

ECE2049-E21 3-25

Working with Pointers

Pointer math: When performing arithmetic operations on pointers, the address changes in

increments based on the type of the pointer. 74; - 740 v // X S/260F (7‘)

// Example,l: array of char
char carr[4];

// How big is the array? (t/ AZWW]—J‘)(/ E/ﬂ/é"&tﬂ(é’ﬂ//‘) = VE//Z‘J

// Say the starting address is 0x4400, what is the dddress of carr[3]?

Of W00 + 3* f/zew:-(C/‘/ﬁ

[

=-o7¢703

// Example 1: array of int
int carr[4};
// How big is the array?

M\A -
(Y &ertenrs) (2. 3y7as/spr) = F Byoes
// Say the starting address is 0x4400, what is the ad ress of iarr[3]?

=

O oo + 3% Smeer(1r7)

7
L = Oriyog © oxfvso
Y 4 (X2
1 Of /[a/

Passing arrays: Further, when you use the name of an array (either to store or pass go a

function), you are passing a pointer to the first element of the array. This is the “starting point”
of the array used as input to calculate the index.

int *ptr = iarr; // Could alsoc write &iarr[0]
do thing(iarr, 10); // Same here

void do_thin (iht*\akx, int size) { // Function takes pointer to array (+ size)

VA 5]
o L, Areced

Pows Do WU xpow Rt 726 op 0
NFRKY o 7

A2 WAY O Tar FER VT RIE Courye

VP T0 Flocgato= 72 quve A

Eorvirzip)

S ebopens 7l
~ NULC ~TEXMNATEY STI)PES

p—

/1

ECE2049-E21 3-26

Memory organization example

Here's a larger example of memory organization. How would we organize the following

variables? @;73‘6 OrfY00’ /5 START”

unsigned int a = 0x00FF;¥
long int b[2] = { 65540, -5 }/

T

P

char ¢ = 'c'; // lc' = 0x13

Srep (LRiTE myespini 10 Qex
Z Bt LA CURDIT (5§ Br7ES (Lo (w7)
Brel< ¢SS0 e
%
= GSS3tl = 2%, 2 |
16'90‘30* Odwzr/gaoo ooo/u/{:ooo 0600707000 oloo

06 A/ -2 oY

DL1 25 (wevmivg, so wmp [Blod: 000 oo affT
2’ Coﬂ/? Jrocep/RE
O..— Ovoo oooo 9960 Orof Mlcwirvoe

[lrir i /121 (o]0 COAP
[3 Awp

o

/'v\’ //// v e S //// /O//

FEFE F F F B

P

PLT =|fF FF FFFB4|

How many bytes of memory do we require?

27
; 7z ;MLMJ]/V ﬁ/fbj/co/ug) = Ry

C /P
= // ﬁ/fé,ﬂo ‘777;04,

ECE2049-E21 3-27

~ So using the above information, we can make our table:

Address | BE | LE
Az Ox 00 FF 0x440C
' 0x440B
ﬁiojz 23 0o o/ 0o oyé 0x440A 95 4%] (@
ﬁ[/] B EF FF FE fg4 |0x4409 F2 ZF 1

c = 934 <4807 | g ge] |-
0x4406 | I FB

0x4405 0’,{ 00
0x4404 | 40

j

ol
2| | o0
0x4402 do OY
0x4401 Ff 00
0x4400 o0 FF

0x4403

' 3[0_7

'

L)
AN

A

/3

ECE2049-E21 3-28

How do you represent fractional numbers in binary form?

So far, we have only expressed integer values in binary. There are two conventions for

. . . . o . . /
representing fractions: fixed point and floating point. 2 /- / e 515, {
Fixed Point JWTECER (/’ 5 £ _ /7 6.25
~—Lht— rracnomAL AP
In a given data type, we can define a bmazg'radix point", which is a fixed pomt that denotes
fractional bits. 1” 11‘ 2 7,0 2” [z' o 21
77’7’7 ff‘ff -l -2 -3 -/

VT pRAC = 0.5, 0428
= /6 EZ5
In this format, the precision of the number is defined by the number of fractional bits.

For example, 4 fractional bits = 29 = 0.0625 is the smallest fraction you can represent

Often, fixed-point representations are stored in scaled form as integers—it's up to you (the

VT K)L
)

programmer) to treat them as fixed-point values.

/F)/00 LIkE ff\//f . Afé'770} Qoo / OOC,O;

N

/Y

ECE2049-E21 3-29
~™ Floating Point 5
[ELE 75Y =2. 310
Floating point is an IEEE standard used to approximate real-valued numbers to a certain number
of decimal places.
Floar Dovplé
There are two forms, single precision (32 bits) and double precision (64 bits). Each
representation has three components:
e Asign bit (S)
e An exponent (E)
® A fractional part (F), which is also called the "mantissa" or "significand"
Format for single precision: S EEEEEEEE FFFFFFFFFFFFFFFFFFFEFFF
Exponent is 8 bits, fractional part is the remainder (23 bits)
Value = (-1)8 * 2E-120%(])
.. Example: Floating point to Decimal
What is the decimal equivalent of the floating point variable CAAA0000h?
A
/. FIvo cpmpoweanrs
¢ L C A A A
//00 /0l 0O [oro Joro Od00 pooo 06O (pooe
/ L g F 4
Sz (NepTivE) o LRITE BT A Fpo
- — X
5 o{b 01 T ~ /f’@/,o/am/
_ -2) e
3, U ForILA 2 /27, p %
{ = o
111-)27 =)1r02L57 6,625 4 . pore
V= (,/)(2)(/JU//ZS/) / O.00/28

=/ 3frz5 .
= {—53/70,%5 / é (A7 Do)

5

ECE2049-E21 3-30
il /V('@'O f /éCML
Some features of floating point: /Wé)m &
* Effective range: approximately +/- 1038 . © Lo
* Single precision has ~7 decimal digits of precision 449 /54 17'

o Double precision and others have more
e Special representations for +/- infinity, NaN
e Standard has conventions for rounding, normalization, etc.

S ey BT
Example: Decimal to floating point Mue"' (_ /) (2 < /2)(/ F)

Represent -3.375 as a single-precision floating-point number.

[e As BmARY 37 = G.25 + 0,728
2 3
~ /0ls 011 & Fz
~—NVST Move Dy 2.

Z. WRITE &LF, 70 Fudp &
v
S:/
Lz /27il =721 = e & @aofé
FezQ/0/¢]

2 Vrire /N PPV s

//'OQD oooll O 6;//6~94 Qeco | vooe [poog
1 L’i

';/EQA/;C(/~
cC o°o O o o

0oop

