LCC 2087 CLecrire

~ CAB O
= Py Gror D5 pusdy BY JSveneor

- :eféwo.cp LPIE By LMD OF \GFFICE
Noks (ae Aex o {0 /‘7/00/4/7/1%)

= SF You AkE AMhune _gwy Aprs WS le2 g
Yoo _ARE Covcerpen ABoor The Puipuie
FLEASE T o AET

- L4/

- _.97,7%7:(704y (STise OKAY I F Yo ARE Fpsnynié Li8 °>

- ,5;/0/&7- 7464’(?43 /_U/' CWAT— Zs Prid
ALY (6/T) = Stv LaB Fon DuTdres

- /(/77643 WDro Pesygp <— XA /Fétd/?/?wé’ﬂ/
‘/</COZ-— P 7(;;{9// /@//‘P) 27 LA epT”

- Grrrce ﬁux;
- Tty 2P, STRH (Me)
= [xipty S -t (Cumno)

ECE2049-E21

Module 4. MSP430 Architecture & Intro to Digital 1/0

Topics
o Getting to know the MSP430 Hardware
e Start of Digital I/O

Last Time

e Memory Organization
e Floating point format

4-1

ECE2049-E21 4-2

Getting to know the MSP430 Hardware

In a programming course, typically you focus on just the code:
o Learn a high level programming language and some algorithms
o Usea "computer" from a high level

A typical program does three things:

/, RE#D (0 some DT
2 M?d/‘)/pI/LﬂTE ZATA FoMENoL

3. OUrour DA

A few common points for all kinds of software:
] » Use constructs like loops, conditional, algorithms like search, sort, data structures
* Software: write logic and syntax correctly and it will just work
’ o Library functions for I/O

... but what's inside the "computer"? How does it work? When you are writing in a high level

programming language, do you care?

In contrast, developing software for embedded requires much more in depth knowledge about
the microprocessor that is the target of your program. For instance, it's important to know:

i wat.ﬂr// 7,'@ N)A/Zpu)/&/’vf'

ECE2049-E21

A general software hierarchy

4-3

We can think of the software components in a system and the way they interact with the hardware as a
hierarchy or software stack:

A general csﬁputing device (PC) might have a software hierarchy like this:

Applications

priag,

» (\
| 9 ?}/Zl)u)s::n? ﬂ«om, Sk

Operating Sys{em
(Includes user interface)

w/A)Da/J y Lipux / Mic 0

+| System Software: Interface to hardware

ﬂZ/W:ﬂS

Hardware (CPU, Memory, Peripherals)

Y

7 Lo o2 //J}’MB(CBJ'?L
STHDAD L1 By hrs 5.

N/Mwﬂ/m Assry

é— éjd /M((){//L) a <7100
Compad WAY 70 (oprer Wy
P//:/’#ZLW’ Ay = 7L

On an embedded system, this stack gets “squashed”:

4/ SIMGULAR

f

Application"‘
—————

System software / OS

Hardware (CPU, Memory, Peripherals)

177‘”‘} — QylLLen. Soprioies

LB L, BT pideH

B 7ML Tl TIoN
7MY 8

Application is closely integrated with the hardware layer
Little or no operating system-usually only Tuns one task or a set of tasks
Often little or no "wrapping" of functionality

On larger systems, you may use a Real Time Operating System (RTOS) that provides

some basic support for multitasking =>~—"

S ECE 3

ECE2049-E21 74 DR L 0 ‘14&

67, Co O
A general microprocessor hardware architecture '
In general, any microprocessor system has the following components:

- OsFFFF (-
0 ——— Cormrsc
cF { , ADRES M rory
/
6 DavA
7
/¢ —]

CPU (Central Processing Unit)
The "core" of the computer

— Lxecoms Yor precith
— B oot 7iminc

Memory
Stores information

— Covmrocisd By CFV
= fwa Ty oF Moot
- Voyﬂp,s prenory (Workirs ﬂw/b/)
= N VeupriLe Moy (LG T2N STORAGL)

Peripherals

— Bymowe, CE95 Tinens, APG- -

— Lvergmuiue TIAT S poor Herory

ECE2049-E21 4.5

How does the CPU work?
The CPU executes machine code, which are low-level instructions directly run by the
hardware. Machine code is a bmary format seen by the CPU.
* Instructions perform very specific tasks
* Instruction set (ISA) is different for every CPU type (MSP430, ARM, x86, ...)
- MALIVE Cop

e Compiler is responsible for figuring out how to build all progrgms using these A nE /ﬁw
mstructlons' ’q

1] main € 5:}

 Disassernbly S2.1 - SR |

9B562¢: 134F CALLA RIS

while (1) 7/ Forever loop | 8B562e: 40F1 8020 BO10 MOV.B #Bx0020,0x8018(SP)
{ | @8%634: 4BF1 0828 6012 MOV.B #6x8020,0%8012(SP)
/{ Read buttons 51-54 i)s@sﬁ‘la: 1360 6645 CALLA #readButtons
ret val = readButtons(): I BB563e: 4CC1 908C MOV.B R12,8xB00c(SP)
| 8BSE42: 415C @@ec MOV.B @x@eec(SP),Ri2
seti.eds(mret -_val); || @eseas: E37C W.B R1Z
i (wret«vﬂ. & exal) { i 285648: 13B@ 6834 n #setleds
Buzzerdn(}; || eese4c: 415F eeeC MOV.B 8xBefc(SP),R1S
. i e@se58: TE33F INV.W RIS
if (~ret_val & ex28) { || eesss2: B31F BIT.W #1,RI5
BuzzerOif(); | bB5654: 242 JEQ (CHDWSLEmaing55E)
il BB5656: 1388 8932 CALLA #BuzzerOn
i{ 8B565a: 415F @B6C MOV.B ex@eec(SP},R15
#/ Check if any keys have been pressed on the 3 ad 1 9B565e: E33F INV.W RIS
curritey = getkey(); /| pBSSE@: B23IF BIT.W #8,RiS
if ((currkey >= '9") && (currKey <= *9°)) { i 2@5862: 2402 JEQ (CHDWSLSmain7E)
setleds(currey - 8x38); || eesesa: 1386 6A76 CALLA #BuzzerOff
| eo85Es83: 13B0 610 CALLA #igetKey
else if (currkey == '*) { || BBSEGc: 4CC1 890D MOV.B R12,0x%008d(SP)
Huzzeron(); il @B5678: 9GF1 BB3G BESD CHMP.B #6x@830,0x080d (SP)
|| eess7s: 2808 3o {CHDWSLSmaing165E)
else if (currkey == '#') { i ees678: 98F1 B@3A 886D CMP.B #8x883a,8xB08d(SP)
BuzzerOff(); | BBSETe: 2097 JHS (CEDWEL SmainGl63E)
} | ep5688: 415C eeed MOV.B @8x8eed(SP),R12
PO5584: 887C ve3e SUB.B #Bx8030,R12
if (currkey) | BB5E88: 13B8 6834 CALLA #setleds
{ b 2B568c: 3can P (CHDWELSMain$14%E)

We will never write in assembly in this class. However, it is important that youL_«i‘arstand that
these instructions exist!

/ ARcupsms

CPU instructions operate on... OF conE
* Internal Registers: 16 general purpose registers (RO-R15) ' Z) Ap 9/ ALL
o Storage locations inside the CPU used for recent instructions S)
All registers are 16-bits wide (except RO and R1, which are 20 bits) z /5 P
o Can be accessed very quickly (one clock cycle) _ é@‘p/(}p,cg’

Some registers control program execution
(RO = Program counter, R1 = Stack pointer, R2 = Status register)
® Memory: Instructions read from and write to memory
o Load and store data from the outside world using the memory bus!

ECE2049-E21 4-6

— What goes in memory?

Remember that memory doesn't just store your variables—it stores the program's code as well!
e The CPU needs to load both code and data from memory

P

There are two generic types of memory architectures used by microprocessors and
microcontroller systems:
e Von Neumann Architecture (~1952)
o Harvard Architecture (~1944)
¢ <

Harvard Architecture: Separate memory address spaces for code and data

Code Addr Data Addr

Code | Code cPU ; Data Bus Data
Memory " conerol Memory

Peripherals

Benefits: Instruction fetch and data read happen in parallel
Drawbacks: Separate instruction and data buses
In this form, the Harvard architecture is used today by highly-pipelined systems like DSP chips.

Von Neumann Architecture: Single memory address spaces for code and data

T e e Memory |

,15?‘{90 ' Control Bus .
’ H _»_(i\ Address Bus
cPu (Code) |
Pt P 3
e d Data Bus |
i (Data)
Peripherals |

Benefits: Single address and data buses (simpler to interface)
Drawbacks: Implicit bottleneck since we have the same pipeline for code and data

- OO Mepsl SHETEenS. Use A Ny gew
fornn 7 TS 7200

ECE2049-E21

The MSP430 Architecture
The MSP430 is a family of microcontrollers—there are hundreds of versions of this CPU with
various configurations of memory and peripherals!

e You can think of it as a type of System on a Chip (SoC)

In our labs, we use the MSP430F5529
o , 128KB of flash memory: Used ior code storage &~ % Kow -1/o UriLe”
. ’8 KB of RAM (+ 2KB RAM for USB controller): Used for data storage

e Lots of peripherals

32 bit multiplier
o Timers, comparator, USB controller
Much, much more!

O

)

How much more? Here’s a block

XIN XOUT RSTMMI
r'y

DVCC DVSS VCORE AVCC AVSS

Py VoltiLe purony

BD

Disrrp- %)

i I ¥ } I P5x, PEY,. FTx PB.)/::}/ DP.DM,PUR
v v v v)V/)’ iu 3
A 4 y y r A h 4 A
XT20N -]

Unified | AC Power S ! voports || vopans || wo Fors || w0 Parts .

Clack PUPZ FaPa PSIPE R7Pe peed
K207 ¢ susteml b sucdi] 12848 ey Wetchdoa || suglios || 2xalios || 26108 || 1ogbos use
S4B || 4KBe2KB Fortap || ntermupt RO USB-PHY
3208 on SBLDO
| MoLK)] BA BB BC D tt‘ist;-flu.
Fiasly RAN 1516 KOs | | 1x16 LOs =11 10s

DA
3 Channel

TAL

Timer_A
3ce

RTC_A

CRC16

USCIg, 1
USCE Ax:
UART,
IrDA, SPI
uscl_Bx:
SPI, 2C

ADC1ZA
12 Bit
200 KSPS

16 Channels|

{14 exti2 int}|
Autoscan

REF

COMP_B
12 Channels

MAB: Memory Address Bus
MDB: Memory Data Bus

S———

/
ey

Note the lines connecting all of the peripherals: this is

o

he memory bus!

N o

ECE2049-E21

~ MSP430 Memory Organization

Memory: A group of sequential locations where binary data is stored
¢ On the MSP430, each memory location holds one byte
« Each byte has a unique address which the CPU uses to access it
e Multibyte data is stored in Endian!

S Urre ewpip/

Two types of memory: Volatile and Non—VolatiIe

RAM (Random Access Memory) (J“M/“l)
¢ Our MSP430 has 8KB of RAM + 2KB for USB

4-8

Noousss | Dura

Gf 00¢ep

CrPFFF

—

» RAM s volatile, meaning that it loses its state when the chip is not powered

e Used as data memory
o Accessed via read and write instructions

. Zz /OM/)S READ /wz/rg_/

Flash (d o/v. LEAD onLy /W)toL)/)

e Used prlmarﬂy for ¢ode memory

= Flash is non-volatile, meaning that its state persists even if the chip is not powered

- CPU fetches code from flash automatically
e Accessed via program control, but more difficult than RAM
o Write time >> Read time
o Writes must occur in large segments (512 bytes)
—

~> LPrpo G Urppe pormpe CODITIonS

ECE2049-E21 4-9

How are programs stored in memory?
When a program is compiled, the linker arranges different portions into various memory
segments, which are stored in different contiguous memory regions. The most important

segments are: SRAM

® The stack (.stack)/ Stores local variables and context information on each function call

* Constant data (.data, .bss): Stores global variables and other constant data (strings,
lookup tables, etc. F‘ S

e Text(. Lext): %rrip‘ﬁtecﬂ:ode for your program (code you write + libraries)

*

® Heap: Dynamically allocated memory (avoid using this!)

When compiling, the linker reads a script called a command file, which maps each section to a
memory device. Usually, most code is stored in flash, while most data goes in RAM, though it
may be necessary to adjust these requirements. Why?

hy should we avoid dynamically allocated memory?

MALDCL) 5 ALows procih 78 Ascir
pemon) A7 gongiag
_ MEro) 154 LMITED

—ME MALLSC 1 as (e,

:> [OE AD JAUSE (lers WRITTasg
ErBeopky Capy’

ECE2049-E21 4-10

~~ Memory architecture and layout

The MSP430 is a 16-bit microcontroller, meaning that:
o The data bus is 16 bits wide
 Internal CPU registers are 16-bits

Note: MSP430 '5xxx and '6xxx families use a 20 bit address bus to allow access to at most
IMB of memory.

G FEFF
LASH
o4 11160 F (cr)
Apprig¢

" crv

K
o L — FZ\M/ U

o ADcC (-
“Nirvony “PPPPED PhrsBlfeny, s
/
| % r Lo R o
W2 7,3_.. e decdtSer 0 pupe

Q0000 s AT A e

However, memory isn’t just one big block....

