
ECE2049-E21 5-1

Module 5. Digital I/O

Topics

• More Digital I/O

About Digital I/O

Why do we use Digital I/O anyway?

Digital I/O is a method of directly inputting our outputting logic levels to the pins of the

MSP430 Package.

You can use this functionality to implement almost anything!

• Simple devices: Buttons and LEDs

• Control signals for complex peripherals

• … and more!

ECE2049-E21 5-2

Fun Facts about Digital I/O

• Eight independent, individually-configurable ports, named P1-P8

• Ports 1-7 each have 8 configurable pins, and are thus 8 bits wide; Port 8 is 3 bits wide

Pins are referenced as P<port>.<pin>, eg. P1.4.

• Each pin of each port can be configured individually as input or output

• Most digital I/O pins share physical package pins with some other function on the device.

This is called pin multiplexing.

• Each port is controlled by six single-byte registers

What is a register, anyway?

Register:

• Registers have addresses just like standard memory, so you can read and write to them

• Provide interface between hardware and software:

o Reading from a register can get information about the hardware

o Writing to a register can change how the hardware is configured, or send

information to a component

• Functionality provided is defined by the hardware’s design. When TI designs the

MSP430, they define what registers are exposed to the programmer, which defines the

functionality available on the chip.

• All the I/O port registers are memory-mapped: each register associated with a digital I/O

port has a unique address in memory

o How do you know what the addresses are? These are defined in the MSP430F5529

datasheet, as well as msp430.h and msp430f5529.cmd

ECE2049-E21 5-3

Pins on the Microcontroller

Microcontrollers often pack lots of functionality in a small IC. However, the usage of all this

functionality is limited by the physical pins on the IC package:

In order to maximize the usage of physical pins, most physical pins (also called “package pins”)

are shared between multiple device functions.

ECE2049-E21 5-4

Digital I/O Registers

The 6 registers controlling the digital I/O ports are as follows. Each bit of the register controls

the state for a specific pin.

Function Select Register (PxSEL)

Selects the port pin for Digital I/O–remember multiplexing? This selects the function used

on the pin.

Direction Register (PxDIR)

Sets port pins as Input or Output

Set to 1 = Output

Set to 0 = Input

Input Register (PxIN)

This is where the value input on the port appears (this is where you "read" the port)

Output Register (PxOUT)

This is where data to be output on the port should be "written"

Drive Strength (PxDS)

Pull-up/Pull-Down Resistor Enable (PxREN)

We will discuss these two (using examples) later.

Conceptually, once you know which registers to use, using Digital I/O is pretty simple–all you

need to do is read or write the desired values to the registers.

ECE2049-E21 5-5

Important Background: Bitwise manipulation

Because each bit in a register can control a different pin, we will make extensive use of C's

bitwise operators (&, |, ~) to manipulate registers.

This is a very common practice when interacting directly with hardware!

Recall the truth tables for the bitwise operators AND (&), OR (|) and NOT (~):

A B Z = A & B

0 0

0 1

1 0

1 1

X Y Z = A | B

0 0

0 1

1 0

1 1

A C = ~A

0

1

Where “X” is either 0 or

From these operators, we can build a set of techniques for individually controlling specific

bits in a variable while leaving the others unmodified.

Common operations using bitwise operators

Setting individual bits to 1

We can do this by OR'ing a specific bit (or bits) with a 1. This is called "setting" a bit.

Setting individual bits to 0

We can do this by AND'ing a specific bit (or bits) with a 0. This is called "clearing" a bit.

ECE2049-E20 5-6

"Selecting" specific bits from a variable

It is often necessary to check if certain bits of a field are set, or to only take the value of certain

bits from a variable. We can do this by AND'ing a variable with only those bits that interest us

set to 1–this is called masking bits.

You will use these techniques very frequently when working with digital I/O:

ECE2049-E20 5-7

Configuration Example

Example: Configure Port 3 for Digital I/O with pins 1 and 0 as inputs and pins 7-4 as outputs.

There are two ways we can approach this problem:

ECE2049-E20 5-8

An even better way: Lose the "magic numbers"

In this lecture, it's clear what the constants 0xF0 and 0xFC mean, but will you remember what's

happening here 6 months from now? Probably not.

In C, as in many programming languages, it's good practice to avoid magic numbers, or hard

coded numbers that appear in the code without explanation of their meaning or purpose. Instead,

we can use constants to attach meaning to these values and allow them to be reused.

In this case, a set of constants for the individual bits are defined for us, we can just use them:

Name Hex Binary Name Hex Binary
BIT0 0x01 0000 0001b BIT4 0x10 0001

0000b

BIT1 0x02 0000 0010b BIT5 0x20 0010

0000b

BIT2 0x04 0000 0100b BIT6 0x40 0100

0000b

BIT3 0x08 0000 1000b BIT7 0x80 1000

0000b

We can also combine these constants to refer to more than one bit:

ECE2049-E20 5-9

Digital I/O Examples

Example 1: Input and output registers

Assume the following digital I/O pins are configured correctly. P3.1-0 are

configured as inputs, and P3.7-4 are outputs.

A Hypothetical Specification:

Input: Read a 2-bit binary value a on P3.1-0
Output: Given a, set P3.7-4 based on the table:

Input Output

𝑎1 𝑎0 𝑧3 𝑧2 𝑧1 𝑧0

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

ECE2049-E20 5-10

Digital I/O Concepts: Input or Output?

How do you know if something is an input or an output?

• If we are “reading” state from a hardware device, it is an input

• If we are “writing” or “setting” the state of a device, it is an output

Consider the LEDs on our board. Are they inputs or outputs? What logic level lights the LED?

In an application program like our demo project, we use the digital I/O ports repeatedly to use

the buttons and LEDs. In these programs, it’s a good idea to wrap the functionality for hardware

components into useful functions.

See setLeds() in the demo project for an example!

ECE2049-E20 5-11

Dealing with Inputs

As we discussed briefly last lecture, inputs may require some special handling.

Consider the buttons on the Launchpad board:

ECE2049-E20 5-12

Digital I/O Registers (cont.)

Pull-up/Pull-Down Resistor Enable (PxREN)

Activates pull-up or pull-down resistors when a pin is configured as a digital input.

What controls whether to use a pull-up or pull-down resistor?

The output register (PxOUT) is actually re-used for this purpose!

Set the appropriate bits to 1 for pull-up resistors, and to 0 for pull-down. See p. 408 of the user's

guide for details.

You will also see one more Digital I/O register…

Drive Strength (PxDS)

Controls "drive strength", or amount of current that is sourced from the pin when used as an

output. We will always use the default setting for this.

Set to 0 = Reduced drive strength (default) Set to 1 = Full drive strength

Important to note: all I/O pins have limits on the amount of current that can pass through them

(usually on the order of milliamps). See the MSP430F5529 datasheet for details.

As an embedded developer, it’s always important to remember the requirements of the

hardware as well as the software!

ECE2049-E20 5-13

Example: Launchpad Buttons (cont.)

We can configure these buttons as inputs and using pull-up resistors, as follows:
void initButtonsLecture(void)

{

 // Configure buttons as outputs using internal pull up resistors

 // Button 1: P1.1

 P1SEL &= ~BIT1;

 P1DIR &= ~BIT1;

 P1REN |= BIT1;

 P1OUT |= BIT1;

 // Button 2: P2.1

 P2SEL &= ~BIT1;

 P2DIR &= ~BIT1;

 P2REN |= BIT1;

 P2OUT |= BIT1;

}

Note that the buttons are on different ports, so we need to configure them separately!

// Read buttons S2 and S1 and return their state in the

// lower two bits of the return value such that

// ret = 0 0 0 0 0 0 S2 S1

unsigned char readButtonsLecture(void)

{

}

ECE2049-E20 5-14

Polling

How can you monitor and use your properly-configured digital I/O functions?

• … by repeatedly checking if the button status has changed!

• Since this just involves reading a memory address, it is very fast to execute (on the order

of microseconds!)

Example:

// Inside your demo project...

while(1)

{

 ret_val = readButtons();

 setLeds(~retVal);

}

Another, similar example:

ret_val = 0x0f; // Default value for all buttons unpressed

while(ret_val == 0x0f)

{

 ret_val = read_buttons();

}

setLeds(~ret_val);

Without a delay, this loop executes in microseconds!

This process is called polling–we constantly check the buttons and do something when they

change.

At the moment, it's all the program needs to do, so it's fine. But what if we wanted to perform

more tasks? What if we wanted the processor to sleep while it was waiting?

