
ECE2049-E20 6-1

Module 6. Review: The Story So Far

Writing Numbers

Be comfortable with standard conventions for writing numbers used in class and in C:

• Decimal: 42

• Hex: 0x2A or 2Ah

• Binary: 0010 1010b

You should be able to convert from binary to hex easily (and vice versa)!

Basic C Instructions and Syntax:

>> Know layout of C source file (Lecture 2)

>> Some Data types (as they are defined in CSS for the MSP430)

// What are the sizes for each datatype?

 int a; //

 float b; //

 char c; //

 unsigned int d; //

 long int e; //

 double f; //

 int arr[5]; //

Arrays: Are blocks of memory where multiple values are stored contiguously. Storing

elements successively (in order) makes it easy to access each element given its index.

ECE2049-E20 6-2

Standard C Operators:

 Math: + - * / = % (modulo)

 Unary: ++ -- (also |= &= += etc.)

 Relational and Logical: > >= < <= == != && | |

 Bitwise: & (AND) | (OR) ^ (XOR) >> (R shift) << (L shift) ~ (NOT)

Quick Questions:
int a = 0x0101;

int w = a + 12;

int x = a << 1;

unsigned char b = 0xff;

unsigned char y = b + 2;

int d = 42;

int z = d / 10;

1) What value is assigned to x?

 a) 0x0202 b) 0x1010 c) 0x2020 c) 0x0080

2) What value is assigned to y?

 a) -1 b) 0 c) 1 d) 256

3) What value is assigned to z?
 a) 2 b) 4 c) 4.2 d) 10

Decisions, looping, etc:

 if (kk > 100) {

 kk = 0;

 } else {

 z = 2*z+kk;

 kk++;

 }

 while (j < 100) {

 /* Body of loop */

 j++;

 }

 for (i = strt; i < end_pt; i++) {

 /* Body of loop. Do something */

 }

 --> The “Forever Loop”
 while (1) {

 /* Body of loop. Do something */

 }

ECE2049-E20 6-3

Basic Structure of a C program

 #define MAX_SZ 100;

 // Determines max value of an array

 unsigned int arrayMax(unsigned int* in_arr, int num_pts);

 void main()

 {

 unsigned int big[MAX_SIZ];

 unsigned int maximum=0;

 unsigned int i, other_val;

 /* Do some stuff */

 i = 0;

 while (i < MAX_SZ)

 {

 big[i] = (i % 10);

 i++;

 }

 maximum = arrayMax(big, MAX_SZ);

 /* Do more stuff */

 } // end of main()

Quick Questions:

1) How many times does the while loop execute?

 a) 99 b) 100 c) 101

2) To what value is big[47] assigned?

 a) 40 b) 0.47 c) 7 d) 470

3) What is the range of valid indices for the big array?

 a) big[1] to big[100] b) big[0] to big[99]

 c) big[0] to big[100] d) big[0] to big[9]

4) To what value is maximum assigned?

 a) 99 b) 100 c) 10 d) 9

ECE2049-E20 6-4

Data Representations (HW #1):

 >> Integer representations:

 --Unsigned, sign-magnitude, two's complement and BCD

 >> Expect Conversion Between Bases and Formats!

Unsigned integers = all bits used to convey magnitude (whole numbers) – For n bits,

 values run from 0 to 2n – 1 (i.e. N=16, 0 to 65535)

 1026 = 00000100 00000010b = 0402h

Sign Magnitude integers = n-1 bits used to convey magnitude with “most significant bit”

 or MSB used for sign (0 = +, 1 = -). For n bits, values run from -2(n-1) -1 to 2(n-1)-1

 1026 = 0000 0100 0000 0010b = 0402h

 -1026 = 1000 0100 0000 0010b = 8402h

 ** Has 2 representations of 0 >>> +0 and -0!

Two's Complement integers = Common format for signed integers (int). For n bits,

values run from -2(n-1) to 2(n-1)-1. (i.e. n=16, -32768 to 32767). Used by C.

 Positive numbers: Same as Unsigned

 1026 = 0000 0100 000 00010b = 0402h

 Negative numbers (ONLY!!): Encode magnitude, Complement each bit, Add 1

 -15 = 0000 0000 0000 1111 = 15

 1111 1111 1111 0000 complement

 +1

 1111 1111 1111 0001 = 0FFF1h = -15 in two's complement

Binary Coded Decimal = Each decimal digit expressed in binary nibble

 367 = 0000 0011 0110 0111b

ECE2049-E20 6-5

Fractional Number representations:
 Fixed point: Binary radix point assigned a fixed location in byte (or word)

 0101.1010 = 5 + 2-1 + 2-3 = 5.625

 Precision is function of number of fractional bits assigned
 --> 4 fractional bits = 2^(-4) = 0.0625 = smallest fraction

 Floating Point (IEEE Standard) : Used to better approximate real valued decimal

 values to a prescribed number of decimal places

 Single Precision (32 bits): S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

 Value = (-1)S 2 (E-127) * (1.F)

 Why are floating point operations computationally expensive?

For the exam, you do not need to remember how to convert to/from floating-point,

but you should understand what it is and how it differs from fixed-point.

Character Representations

ASCII: Standard for representing characters in Roman alphabet and some control

characters

• You will have an ASCII table on the exam. Know how to read one and when you
need it!

Quick Questions:

1) The decimal equivalent of unsigned integer 8002h is

 a) 32770 b) 65538 c) -2 d) 16386

2) The decimal equivalent of two's complement integer 8002h is

 a) -2 b) 32770 c) -32766 d) -65538

3) The decimal equivalent of two's complement integer 0002h is

 a) -2 b) 32770 c) 2 d) -65538

4) The decimal equivalent of BCD integer 8002h is

a) -2 b) 32770 c) 8002 d) 2008

http://www.psc.edu/general/software/packages/ieee/ieee.html

ECE2049-E20 6-6

Little Endian: The MSP430, like Intel processors, is “Little Endian” (HW1)

 -- The lower byte of each 16 bit word is stored first then the higher byte

 “Low Byte, High Byte”

 -- For double words the lower word is stored first then the upper word

Ex: How 65340 decimal = 00 01 00 04h is stored in memory at address 0400h

 Little Endian

Address Byte Value

02403h 00h

02402h 01h

02401h 00h

02400h 04h

A memory dump from CCS shows contents of addresses from left to right starting at 02400h

02400h = 04 00 01 00 ... <= Bytes appear “out of order” when read left to right

Big Endian: Many other RISC processors

 -- The higher byte (big end) of each 16 bit word is stored first then the lower byte

 BIG Endian

Address Byte Value

02403h 04h

02402h 00h

02401h 01h

02400h 00h

A memory dump from a big endian processor (also left to right)

02400h= 00 01 00 04... <= Bytes appear “in order” when read left to right

Network Byte Order = BIG ENDIAN!!!

ECE2049-E20 6-7

Microprocessor Systems Architecture:

>> General Computing Hardware/Software Hierarchy

Applications

Operating System = User Interface

System SW = Interface to HW

HW Layer = CPU, Mem.,

peripherals

>> Gets “squashed” in an embedded system...

Applications

Maybe some System SW functions

HW Layer = CPU, Mem.,

peripherals

Harvard Architecture – Separate memory address spaces (and busses) for code and data
 (“Better” architecture for pipelining instruction fetches)

Von Neumann Architecture – Single memory address space (and bus) for code & data

ECE2049-E20 6-8

>> MSP430x55xx uses Von Neumann architecture

 >> We're using MSP430F5529

 -- 128 KB Flash memory (code)

 -- 8 KB RAM (data) + 2 kB USB RAM

 -- LCD controller

 -- Hardware multiply, UART, and a slew of other peripherals
 (Timers, ADC, comparator, general digital IO ports...)

Memory Organization:

 >> Memory = group of sequential locations where binary data is stored

 -- In MSP430, a memory location holds 1 byte

 -- Each byte has unique address which CPU uses to read to and write

 from that location
 -- Multibyte data is stored Little Endian!

 -- 2 types of memory: Volatile and Non-volatile
 RAM = 8KB = DATA memory = Volatile

 FLASH = 128KB = CODE memory (primarily!) = Non-volatile

Memory Operations

• Read and Write: retrieving or writing DATA to/from RAM (under programmer

control)

• Fetch: retrieving of instruction from CODE (Flash) memory

 (automatic CPU function)
 >> Flash is NOT byte writable!

 -- Must be erased in multi-byte (e.g. 512 byte) segments

 >> A flash write cycle takes much longer than read cycle

MSP430 is 16 bit Microcontroller

 >> 16 bit word size = 16 bit internal registers

 >> Also has 20 bit address bus (can access up to 1 MB = 220 addresses)

 >> Know Memory Map for MSP430x5529x Processors (from HW)

 -- Addresses for RAM & FLASH, (good thing to have in notes!)
 >> Know how to figure memory addresses

ECE2049-E20 6-9

Memory Mapped I/O

What does it mean for I/O to be memory-mapped?

ECE2049-E20 6-10

Quick Questions:

1) The long int i = 0x00081230 is stored in memory by a microprocessor as

Address Contents

0213h 30h

0212h 12h

0211h 08h

0210h 00h

The microprocessor must be

a) Little Endian b) Big Endian c) Running Linux d) Running Windows 10

2) In the MSP430F5529, the RAM is

a) non-volatile system memory b) volatile data memory

c) non-volatile code memory d) consists only of the 16 CPU registers

3) In the MSP430F5529, the FLASH memory is

a) non-volatile code memory b) volatile data memory

c) volatile code memory d) not available in this model

ECE2049-E20 6-11

MSP430F5529 Basic Digital I/O (HW3-4):

>> Eight independent, individually configurable digital I/O ports

 -- Ports 1-7 are 8-bit wide and Port 8 is 3 bits wide

>> Each pin of each port can be configured individually as an input or an output

>> Each pin of each port can be individually read or written to

 Function Select Register: Sets function of each pin in the port (i.e. P4SEL)
 -- Bit = 0 = Selected for Digital I/O

 -- Bit = 1 = Not selected for digital I/O (multiplexed pin functions)

 Direction Register: Sets direction of each pin in the port (i.e. P2DIR)

 -- Bit = 0 = Corresponding pin is an Input
 -- Bit = 1 = Corresponding pin is an Output

 Input Register: Where input to the port is read from (i.e. P2IN)

 -- Bit = 0 = Logic low

 -- Bit = 1 = Logic high

 Output Register: Where data to be output from the port is written (i.e. P5OUT)

 -- Bit = 0 = Logic low

 -- Bit = 1 = Logic high

 Drive Strength: Sets drive strength of port (we will usually leave as default)

 --Bit = 0 = reduced drive strength (default)

 --Bit = 1 = full drive strength

 Pull-up/down Resistor Enable: Enable internal pull-up resistors (can be used for inputs)

 --Bit = 0 = Not enabled (default)

 --Bit = 1 = Enabled (see User's Guide)

>> All I/O port registers are memory mapped. Register names defined in msp430x4xx.h

 (Read from and Write to defined names as if writing to C variables...)

ECE2049-E20 6-12

>> Polling: Repeated checking of IO ports to see if they have data or need servicing

 (usually inside main loop)

#include "msp430.h"

#include <stdlib.h>

void configPort()

{

 P5SEL = 0x00;

 P5DIR = (BIT7|BIT5|BIT3|BIT1);

}

void main()

{

 configPort();

 while (1)

 {

 char in = P5IN;

 P5OUT = (in & 0x55) << 1;

 }

}

a) Which port(s) and which pins are being used as digital inputs?

b) Which port(s) and which pins are being used as digital outputs?

c) Assume that the port 5 input register holds the value 6Dh. What value is

 written to the port 5 output register?

