ECE2049-E20 6-1

Module 6. Review: The Story So Far

Writing Numbers

Be comfortable with standard conventions for writing numbers used in class and in C:
e Decimal: 42
e Hex: 0x2A or 2Ah
e Binary: 0010 1010b

You should be able to convert from binary to hex easily (and vice versa)!

Basic C Instructions and Syntax:

>> Know layout of C source file (Lecture 2)
>> Some Data types (as they are defined in CSS for the MSP430)

// What are the sizes for each datatype?

int ay //
float b; //
char c; //
unsigned int d; //
long int e; //
double £; //
int arr([5]; //

Arrays: Are blocks of memory where multiple values are stored contiguously. Storing
elements successively (in order) makes it easy to access each element given its index.

ECE2049-E20

Standard C Operators:
Math: + - =+ / = % (modulo)
Unary: ++ -- (also |= &= +=etc.)
Relational and Logical: > >= < <=
Bitwise: s (AND) | (OR) ~(XOR) >>
Quick Questions:

= I= && | |

(:R shift) << (Lshift) ~ (NOT)

6-2

int a = 0x0101;
int w = a + 12;
int x = a << 1;
Oxff;
b + 2;

unsigned char b
unsigned char y

int d
int z

42;
d / 10;

1) What value is assigned to x?

a) 0x0202 b) 0x1010 ¢) 0x2020

2) What value is assigned to y?

a) -1 b) 0 c) 1 d) 256

3) What value is assigned to z?

a) 2 b) 4 c) 4.2 d) 10

Decisions, looping, etc:

c) 0x0080

if (kk > 100) {

kk = 0;
} else {
z = 2*z+kk;
kk++;
}
while (J < 100) {
/* Body of loop */
Jt++

}

for (i = strt; i < end pt; i++) {
/* Body of loop. Do something */
}

-->The “Forever Loop”

while (1) {

/* Body of loop. Do something */

ECE2049-E20

Basic Structure of a C program

#define MAX SZ 100;

// Determines max value of an array
unsigned int arrayMax (unsigned int* in arr, int num pts);

vold main ()

{

unsigned int big[MAX SIZ];
unsigned int maximum=0;
unsigned int i, other val;

/* Do some stuff */
i =0;
while (i < MAX SZ)
{
big[i] = (i % 10);
i++;
}
maximum = arrayMax(big, MAX SZ);
/* Do more stuff */

} // end of main()

Quick Questions:

1) How many times does the while loop execute?

a) 99 b) 100 c¢) 101
2) To what value is big[47] assigned?

a) 40 b) 0.47 c) 7 d) 470
3) What is the range of valid indices for the big array?

a) big[1] to big[100] b) big[0] to big[99]
c) big[0] to big[100] d) big[0] to big[9]

4) To what value is maximum assigned?
a) 99 b) 100 c) 10 d) 9

ECE2049-E20 6-4

Data Representations (HW #1):

>> Integer representations:
--Unsigned, sign-magnitude, two's complement and BCD

>> Expect Conversion Between Bases and Formats!

Unsigned integers = all bits used to convey magnitude (whole numbers) — For 7 bits,
values run from 0 to 2" — 1 (i.e. N=16, 0 to 65535)

1026 = 00000100 00000010b = 0402h

Sign Magnitude integers = n-1 bits used to convey magnitude with “most significant bit”
or MSB used for sign (0 = +, 1 = -). For n bits, values run from -2V -1 to 20D-]

1026 = 0000 0100 0000 0010b = 0402h
-1026 = 1000 0100 0000 0010b = 8402h

** Has 2 representations of 0 >>> +0 and -0!

Two's Complement integers = Common format for signed integers (int). For n bits,
values run from -2V to 20=D-1, (i.e. n=16, -32768 to 32767). Used by C.

Positive numbers: Same as Unsigned
1026 = 0000 0100 000 00010b = 0402h
Negative numbers (ONLY!!): Encode magnitude, Complement each bit, Add 1

-15=0000 0000 0000 1111 =15
1111 1111 1111 0000 complement
+1
1111 1111 1111 0001 = OFFF1h = -15 in two's complement

Binary Coded Decimal = Each decimal digit expressed in binary nibble

367 =0000 0011 0110 0111b

ECE2049-E20 6-5

Fractional Number representations:
Fixed point: Binary radix point assigned a fixed location in byte (or word)

0101.1010=5+2"1+23 =5.625

Precision is function of number of fractional bits assigned
--> 4 fractional bits = 2(-4) = 0.0625 = smallest fraction

Floating Point (IEEE Standard) : Used to better approximate real valued decimal
values to a prescribed number of decimal places

Single Precision (32 bits): S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
Value = (-1)° 2 @127 % (1.F)

Why are floating point operations computationally expensive?

For the exam, you do not need to remember how to convert to/from floating-point,
but you should understand what it is and how it differs from fixed-point.

Character Representations
ASCII: Standard for representing characters in Roman alphabet and some control
characters
¢ You will have an ASCII table on the exam. Know how to read one and when you
need it!

Quick Questions:
1) The decimal equivalent of unsigned integer 8002h is
a) 32770 b) 65538 c) -2 d) 16386

2) The decimal equivalent of two's complement integer 8002h is
a) -2 b) 32770 c) -32766 d) -65538

3) The decimal equivalent of two's complement integer 0002h is
a) -2 b) 32770 c)2 d) -65538
4) The decimal equivalent of BCD integer 8002h is

a) -2 b) 32770 ¢) 8002 d) 2008

http://www.psc.edu/general/software/packages/ieee/ieee.html

ECE2049-E20 6-6

Little Endian: The MSP430, like Intel processors, is “Little Endian” (HW1)

-- The lower byte of each 16 bit word is stored first then the higher byte
“Low Byte, High Byte”

-- For double words the lower word is stored first then the upper word

Ex: How 65340 decimal =00 01 00 04h is stored in memory at address 0400h

Little Endian
Address Byte Value

02403h 00h
02402h 01h
02401h 00h
02400h 04h

A memory dump from CCS shows contents of addresses from left to right starting at 02400h
02400h = 04 00 01 00 .. <= Bytes appear “out of order” when read left to right

Big Endian: Many other RISC processors
-- The higher byte (big end) of each 16 bit word is stored first then the lower byte

BIG Endian
Address Byte Value
02403h 04h
02402h 00h
02401h 01h
02400h 00h

A memory dump from a big endian processor (also left to right)
02400h= 00 01 00 04... <= Bytes appear “in order” when read left to right

Network Byte Order = BIG ENDIAN!!!

ECE2049-E20

Microprocessor Systems Architecture:

>> General Computing Hardware/Software Hierarchy

Applications

Operating System = User Interface

System SW = Interface to HW

HW Layer = CPU, Mem.,
peripherals

>> Gets “squashed’ in an embedded system...

Applications

Maybe some System SW functions

HW Layer = CPU, Mem.,
peripherals

Harvard Architecture — Separate memory address spaces (and busses) for code and data
(“Better” architecture for pipelining instruction fetches)

Code Addr Data Addr

Code Code cPU) N Data Bus Data
Memory Control A | Memory

Control

Peripherals

Von Neumann Architecture — Single memory address space (and bus) for code & data

Memory
Control Bus
Address Bus
CPU N——3
(Code)
2, V| E—
Data Bus

Peripherals

ECE2049-E20 6-8

>> MSP430x55xx uses Von Neumann architecture

>> We're using MSP430F5529
-- 128 KB Flash memory (code)
-- 8 KB RAM (data) + 2 kB USB RAM
-- LCD controller
-- Hardware multiply, UART, and a slew of other peripherals
(Timers, ADC, comparator, general digital 10 ports...)

Memory Organization:

>> Memory = group of sequential locations where binary data is stored
-- In MSP430, a memory location holds 1 byte

-- Each byte has unique address which CPU uses to read to and write
from that location
-- Multibyte data is stored Little Endian!

-- 2 types of memory: Volatile and Non-volatile
RAM = 8KB = DATA memory = Volatile
FLASH = 128KB = CODE memory (primarily!) = Non-volatile

Memory Operations
e Read and Write: retrieving or writing DATA to/from RAM (under programmer
control)
e Fetch: retrieving of instruction from CODE (Flash) memory
(automatic CPU function)
>> Flash is NOT byte writable!
-- Must be erased in multi-byte (e.g. 512 byte) segments
>> A flash write cycle takes much longer than read cycle

MSP430 is 16 bit Microcontroller
>> 16 bit word size = 16 bit internal registers
>> Also has 20 bit address bus (can access up to 1 MB = 22 addresses)
>> Know Memory Map for MSP430x5529x Processors (from HW)
-- Addresses for RAM & FLASH, (good thing to have in notes!)
>> Know how to figure memory addresses

ECE2049-E20

Memory Mapped 1/0

What does it mean for I/O to be memory-mapped?

6-9

ECE2049-E20

Quick Questions:

1) The long int i=0x00081230 is stored in memory by a microprocessor as

Address

Contents

0213h

30h

0212h

12h

0211h

08h

0210h

00h

The microprocessor must be

a) Little Endian b) Big Endian ¢) Running Linux d) Running Windows 10

2) In the MSP430F5529, the RAM is

a) non-volatile system memory b) volatile data memory

¢) non-volatile code memory d) consists only of the 16 CPU registers

3) Inthe MSP430F5529, the FLASH memory is

a) non-volatile code memory b) volatile data memory

¢) volatile code memory

d) not available in this model

6-10

ECE2049-E20 6-11

MSP430F5529 Basic Digital 1/O (HW3-4):

>> FEight independent, individually configurable digital I/O ports
-- Ports 1-7 are 8-bit wide and Port 8 is 3 bits wide

>> Each pin of each port can be configured individually as an input or an output

>> Each pin of each port can be individually read or written to

Function Select Register: Sets function of each pin in the port (i.e. PASEL)
-- Bit = 0 = Selected for Digital I/O
-- Bit = 1 = Not selected for digital /O (multiplexed pin functions)

Direction Register: Sets direction of each pin in the port (i.e. P2DIR)
-- Bit = 0 = Corresponding pin is an Input
-- Bit = 1 = Corresponding pin is an Qutput

Input Register: Where input to the port is read from (i.e. P2IN)
-- Bit =0 = Logic low
-- Bit =1 = Logic high

Output Register: Where data to be output from the port is written (i.e. PSOUT)
-- Bit= 0= Logic low
-- Bit =1 = Logic high

Drive Strength: Sets drive strength of port (we will usually leave as default)
--Bit = 0 = reduced drive strength (default)
--Bit = 1 = full drive strength

Pull-up/down Resistor Enable: Enable internal pull-up resistors (can be used for inputs)
--Bit = 0 = Not enabled (default)
--Bit = 1 = Enabled (see User's Guide)

>> All I/O port registers are memory mapped. Register names defined in msp430x4xx.h
(Read from and Write to defined names as if writing to C variables...)

ECE2049-E20 6-12

>> Polling: Repeated checking of 10 ports to see if they have data or need servicing
(usually inside main loop)

#include "msp430.h"
#include <stdlib.h>

void configPort ()
{
P5SEL
P5DIR

0x00;
(BIT7|BIT5|BIT3|BITL);

}

void main ()

{
configPort () ;

while (1)
{

char in = P5IN;

P50UT = (in & 0x55) << 1;
}

a) Which port(s) and which pins are being used as digital inputs?

b) Which port(s) and which pins are being used as digital outputs?

c) Assume that the port 5 input register holds the value 6Dh. What value is
written to the port 5 output register?

